Читать «Математика. Утрата определенности.» онлайн - страница 386

Морис Клайн

150

Различие между математикой и «теоретическим» естествознанием полностью осознавал Лейбниц. «Универсальная математика, — писал он, — это, так сказать, логика воображения»; предметом ее является «все, что в области воображения поддается точному определению». В XIX в. специфику математики, отличие ее от естественных (и гуманитарных) наук отчетливо понимали, скажем, замечательный немецкий математик Герман Грассман, говоривший, что «чистая математика есть наука особого бытия, поскольку она рождена в мышлении», или один из создателей математической логики англичанин Джордж Буль, еще четче сформулировавший ту же мысль: «Математика изучает операции, рассматриваемые сами по себе, независимо от различных материй, к которым они могут быть приложены». Я. Бойаи (в отличие от Лобачевского или Гаусса) при создании неевклидовой геометрии подходил к ней не как к возможной системе устройства физической Вселенной, а как к чисто логической схеме, «аксиоматизированной структуре», как сказали бы мы сегодня. При этом любопытно отметить, что Лейбниц (в отличие от Ньютона), Грассман, Буль или Я. Бойаи не получили специального математического образования и были полностью свободны от давления сложившихся традиций, что в чем-то, конечно, ограничивало их возможности, но в то же время придавало их мышлению особую свежесть и остроту.

151

В применениях математики широко используются степенные ряды вида a0 + a1x + a2x2 + a3x3 + … и тригонометрические ряды, или ряды Фурье (скажем, a0 + a1cos x + b1sin x + a2cos 2x + b2sin 2x + …).

152

В противоположность этому попытки Паскаля заинтересовать Ферма и Гюйгенса теорией вероятностей, в значительной степени созданной этими тремя учеными, оказалась полностью удачными; частично, видимо, это объяснялось тем,что теория вероятностей возникла сразу же как «прикладная» наука (со столь, впрочем, малопочтенной областью применения, как теория азартных игр), а частично, может быть, прозорливой интуицией гениев, «предчувствующих» будущие глубочайшие прикладные возможности создаваемой ими области математической науки.

153

В частности, законы умножения гамильтоновых «кватернионных единиц» i, j и k прояснило идущее от Гамильтона отождествление этих «единиц» с (физическими) вращениями пространства на 90° вокруг трех взаимно перпендикулярный осей: 0x, 0y и 0z.