Читать «Фейнмановские лекции по физике 1. Современная наука о природе, законы механики» онлайн - страница 164

Ричард Филлипс Фейнман

В этих рассуждениях кроется ключ к вычислению силы или напряженности поля, когда потенциальная энергия известна.

Пусть потенциальная энергия тела в точке (х, у, z) дана, а мы хотим узнать, какая сила действует на него в этой точке. Для этого нужно знать потенциал не только в этой точке, но и в соседних. Почему? Попробуем вычислить x–компоненту силы (если мы это сумеем сделать, то точно таким же способом мы вычислим и у–и z–компоненты, определив тем самым всю силу). Если б мы сдвинули тело на малое расстояние ?x, то работа, произведенная силой над телом, равнялась бы x–компоненте силы, умноженной на ?x (если ?x достаточно мало), и должна была бы быть равна изменению потенциальной энергии при переходе от одной точки к другой:

?W=-?U=Fx?x. (14.9)

Мы просто применили формулу ?F•ds=-?U для очень

малых расстояний. Теперь разделим на ?x и обнаружим, что сила равна

Fx=-?u/?x. (14.10)

Конечно, это не совсем точно. На самом деле нам нужно перейти в (14.10) к пределу при ?x, стремящемся к нулю, потому что (14.10) точно соблюдается только для бесконечно малых ?x. Мы узнаем в правой части (14.10) производную U по х и хотим написать–dUldx. Но U зависит и от х, и от у, и от z, и для такого случая математики придумали другое обозначение, которое рассчитано на то, чтобы напоминать нам, что надо быть очень осторожным, дифференцируя такую функцию. Этот символ напоминает, что только х считается изменяющимся, а у и z – нет. Вместо d они просто пишут «6 навыворот», или д. (По–моему, когда начинаешь изучать дифференциальные исчисления, то вообще лучше работать с д, а не с d; d всегда хочется сократить, а вот на д как–то рука не поднимается!) Итак, они пишут dU/dx, а иногда в припадке строгости, желая быть очень бдительными, они ставят за дх скобку с маленькими у, z внизу (dU/dx)yz, что означает: «Продифференцируй U по х, считая у и z постоянными». Но мы чаще всего не будем отмечать, что осталось постоянным, из контекста это всегда можно понять. Но зато всегда будем писать д вместо d как предупреждение о том, что эта производная берется при постоянных значениях прочих переменных. Ее называют частной производной, т. е. производной, для вычисления которой меняют часть переменных, х.

Итак, мы обнаруживаем, что сила в направлении х равна минус частной производной U по х:

Fx=-дU/дx (14.11)

Точно так же и сила в направлении у получается дифференцированием U по у при постоянных х и z, а третья составляющая силы опять–таки есть производная по z при х и у постоянных:

В этом и состоит способ получать силу из потенциальной энергии. Поле получается из потенциала в точности так же:

Заметим, кстати, что существует и другое обозначение (впрочем, пока оно нам не понадобится). Так как С есть вектор с компонентами х, у, z, то символы д/дх, д/ду, d/dz, дающие х-, у-, z–компоненты поля, чем–то напоминают векторы. Математики изобрели знаменитый символ ?, или grad, называемый «градиентом»; это не величина, а оператор, он делает из скаляра вектор. У него есть три составляющие: x–компонента этого grad есть д/дх, y–компонента – д/ду, а z–компонента– d/dz, и мы можем позабавиться, переписав наши формулы в виде