Читать «Стол находок утерянных чисел» онлайн - страница 37

Владимир Артурович Левшин

— Смотрите-ка, пифагоровы тройки! — сказал он, указав на табличку под изображением Пифагора.

— Как интересно! — заверещала девочка. — Ведь мне пока и на ослике прокатиться не удалось, а тут на тройке!

— Ну, на пифагоровых тройках вряд ли покатаешься, — усмехнулся я, — хотя уехать на них далеко можно. Так называют тройки чисел, связанных между собой простой зависимостью. Сумма квадратов двух из них равна квадрату третьего. К примеру: 32+42=52. Или: 52+122=132. Или: 202+212 =292. Таких числовых троек бесконечное множество, и они очень нужны в геометрии, потому что помогают строить прямоугольные треугольники.

Девочка спросила, нет ли у Пифагора таких числовых троек, где бы сумма кубов двух чисел равнялась кубу третьего? Пришлось сказать, что таких троек нет ни у Пифагора, ни вообще у кого бы то ни было. Нет их и для любых других степеней. Ни для четвёртой, ни для пятой… Ни для какой! В XVII веке это подметил французский математик Пьер Ферма́ и, по его собственным словам, доказал, хотя доказательство его нигде не обнаружено. Вслед за Ферма то же пытались доказать многие, но безуспешно, несмотря на то, что справедливость этого утверждения, казалось бы, очевидна. И всё же оно вошло в историю математики под именем большой теоремы Ферма.

— Теорема Ферма, — повторила девочка. — Красиво! Но почему же большая? Разве есть ещё и малая?

— Представь себе, есть, — сказал я. — Вот она, под портретом знаменитого француза. Смысл её очень прост: если какое-нибудь натуральное число возвести в степень простого числа и вычесть затем основание, то разность всегда делится на это простое число, то есть на показатель степени.

— Если это и просто, то не для меня, — вздохнула девочка.

— На словах, — возразил я. — А на примере не так страшен чёрт, как его малюют. Возьмём число 4, возведём его в степень простого числа — ну, хотя бы в третью. Получим число 64 (43 = 64). Теперь вычтем из этого числа основание степени, то есть число 4. Получим 60. А 60 как раз и делится на показатель степени, то есть на 3. И получается при этом 20.

— Говорят, когда Ферма доказал эту теорему, — вмешался Главный терятель, — он воскликнул: «Меня озарило ярким светом!» Впрочем… впрочем, может, это воскликнул кто-нибудь другой?

— Нет-нет, — поспешно заверил я, — эти слова приписывают именно Ферма. И то сказать, такие теоремы не всякий день приходят в голову, несмотря на всю их видимую простоту. Недаром говорят: всё великое просто. И недаром малая теорема Ферма занимает такое большое место в науке о числах…

Я хотел продолжать, но девочку отвлекла витрина, отведённая математическим рядам.

— Что за ряды такие? — удивилась она. — Прямо как на рынке! Цветочный, молочный, мясной…

— На рынке ряды торговые, — возразил я, — а в математике числовые. И может их быть бесконечное множество. Потому что числовой ряд — это любая последовательность чисел. Скажем, 3, 25, 48, 364. Или: 8, 12, 93, 165, 482. Хоть это и не значит, что любой числовой ряд интересен с точки зрения математики. Математические ряды всегда строятся по какому-нибудь правилу. Один по такому, другой — по этакому. Напридумать таких правил можно сколько угодно. Куда труднее разгадать, по какому правилу ряд строили…