Читать «Этьенн Бонно де Кондильяк» онлайн - страница 76

Вениамин Моисеевич Богуславский

Когда, вычисляя, мы пользуемся словесным языком, нам необходимо держать в уме большое количество всевозможных сведений. Это требует от нас таких усилий, которые нередко превосходят возможности нашей памяти. В результате допускаются ошибки, обнаружить которые в большом количестве словесных выражений, образующих математическое рассуждение, очень трудно. Когда же мы вычисляем, пользуясь буквенными обозначениями алгебры, нам достаточно знать, что a, b, c и т. д. — это какие-то количества; никаких знаний ни о конкретных предметах, ни о конкретных числах здесь не требуется. К нашей памяти при этом предъявляются минимальные требования, а исчисление сводится к выполнению лишь простых действий, какие предусмотрены знаками «плюс», «минус» и т. д., действий, не требующих усилий. Всю цепь действий, из которых складывается сложное вычисление, можно легко проследить и тем самым избежать ошибок, связанных с пропуском какого-нибудь ее звена. Введение символики в математику принесло с собой еще одно преимущество, «которое нельзя было предвидеть: дело в том, что одна решенная задача дает решение всех подобных задач» (там же, 368–369).

Указывая на то, что язык условных знаков, символов, освобождает нас от необходимости задумываться над тем, к каким конкретным объектам и к каким конкретным величинам эти символы могут быть применены, Кондильяк пишет, что здесь «решение находят механически» (там же, 371). Но суть вычислительных действий независимо от того, производятся ли они на словесном языке или на языке условных знаков, символов, одна и та же; символика лишь выявляет эту суть, освобождая ее от всего, что ее заслоняет. Следовательно, чисто механический характер присущ самим исчислениям, самой математике; алгебраический язык лишь обнажает этот ее характер, делает его ясным.

Не совпадает ли здесь позиция Кондильяка с точкой зрения логических позитивистов, утверждающих, что математики «имеют дело только с лишенными смысла формулами, с которыми манипулируют в соответствии с данными формальными правилами», которые вполне произвольны (33, 208)? Согласно известному изречению Б. Рассела, мы не знаем ни того, о чем мы в математике говорим, ни того, что мы там, собственно, утверждаем, и поэтому дедуктивно построенная система математических истин «нигде не покоится на почве действительности а свободно парит, подобно Солнечной системе, неся в самой себе гарантию своей устойчивости» (59, 36).

Суть позиции Кондильяка по этому вопросу сводится к следующему. В математике мы выявляем определенные свойства отношений, присущих множествам всевозможных реальных вещей, отношений, обладающих помимо этих свойств множеством других характеристик. Выделенные нами свойства мы мысленно рассматриваем сами по себе, отвлекаясь от всех прочих свойств, от которых они в реальных вещах неотделимы. Применение математических символов, которые, кроме выделенных нами свойств, ничего больше не обозначают, помогает нам рассматривать эти свойства сами по себе. Но это не значит, что математические символы вовсе лишены смысла или что мы придаем им смысл, определенный лишь нашим произволом. Обозначаемые этими символами математические идеи мы не выдумали, а, как выражается Кондильяк, усмотрели в самих реально существующих вещах, и именно поэтому мы можем успешно применять результаты вычислений к этим вещам.