Читать «Физика элементарных частиц материи» онлайн - страница 20

Владимир Голощапов

Принцип Паули помогает объяснить разнообразные физические явления. Следствием принципа является наличие электронных оболочек в структуре атома, из чего, в свою очередь, следует разнообразие химических элементов и их соединений. Количество электронов в отдельном атоме равно количеству протонов. Так как электроны являются фермионами, принцип Паули запрещает им принимать одинаковые квантовые состояния. В итоге, все электроны не могут быть в одном квантовом состоянии с наименьшей энергией (для невозбуждённого атома), а заполняют последовательно квантовые состояния с наименьшей суммарной энергией (при этом не стоит забывать, что электроны неразличимы друг от друга(?), и поэтому нельзя сказать, в каком именно квантовом состоянии находится конкретный электрон). Примером может служить невозбуждённый атом лития (Li), у которого два электрона находятся на 1s-орбитали (самой низкой по энергии), при этом у них отличаются собственные моменты импульса, и третий электрон не может занимать 1s-орбиталь, так как будет нарушен запрет Паули. Поэтому третий электрон занимает 2s-орбиталь (следующая, низшая по энергии, орбиталь после 1s). Эта степень свободы была в 1925 г. идентифицирована Г. Уленбеком и С. Гаудсмитом как спин электрона. Спин (от англ. spin – вращаться, вертеться.), собственный момент количества движения элементарных частиц, имеющий квантовую природу и не связанный с перемещением частицы как целого. (При введении понятия «Спин» предполагалось, что электрон можно рассматривать как «вращающийся волчок», а его Спин – как характеристику такого вращения, – отсюда название «Спин».) Спин называется также собственный момент количества движения атомного ядра (и иногда атома); в этом случае Спин определяется как векторная сумма (вычисленная по правилам сложения моментов в квантовой механике) Спин элементарных частиц, образующих систему, и орбитальных моментов этих обусловленных их движением системы. Спин измеряется в единицах Планка постоянной ћ и равен Jћ, где J – характерное для каждого сорта частиц целое (в т. ч. нулевое) или полуцелое положительное число, называемое спиновым квантовым числом (обычно его называют просто Спин). Соответственно говорят, что частица обладает целым или полуцелым Спин. Например, Спин электрона, протона, нейтрона, нейтрино, так же как и их античастиц, в единицах ћ равен 1/2, Спин и К-мезонов – 0, Спин фотона равен 1. Хотя у фотона (как и у нейтрино) нельзя измерить собственный момент количества движения, т. к. нет системы отсчёта, в которой фотон покоится, однако в квантовой электродинамике доказывается, что полный момент фотона в произвольной системе отсчёта не может быть меньше 1; это даёт основание приписать фотону Спин 1. Наличие у нейтрино Спин 1/2 вытекает, например, из закона сохранения момента количества движения в процессе бета-распада. Проекция Спин на любое фиксированное направление z в пространстве может принимать значения J, J – 1, …, – J. Т. о., частица со Спин J может находиться в 2J + 1 спиновых состояниях (при J = 1/2 – в двух состояниях), что эквивалентно наличию у неё дополнительной внутренней степени свободы. Квадрат вектора Спин, согласно квантовой механике, равен ћ2J(J+1). Спин частиц однозначно связан с характером статистики, которой подчиняются эти частицы. Как показал Паули (1940), из квантовой теории поля следует, что все частицы с целым Спин подчиняются Бозе – Эйнштейна статистике (являются бозонами), с полуцелым Спин – Ферми – Дирака статистике (являются фермионами). Для фермионов, например электронов, справедлив принцип Паули, для бозонов он не имеет силы. В математический аппарат нерелятивистской квантовой механики Спин был последовательно введён Паули, при этом описание Спин носило феноменологический характер. В действительности Спин частицы это релятивистский эффект (что было доказано П. Дираком). Спин это изобретение квантовой теории для объяснения наличия магнитного потока в атоме и различных частицах.[Вик. http://ru.wikipedia.org/wiki/%D0%A1%D0%BF%D0%B8%D0%BD].А существует ли вращение элементарных частиц? Давайте рассмотрим такой простейший опыт. В «Оптике» есть закон отражения света. Он гласит, что падающий луч, отражённый луч и перпендикуляр к границе двух сред, восстановленный в точке падения луча, лежат в одной плоскости; угол отражения равен углу падения. Ели бы луч света состоял из вращающихся в различные стороны квантов, то при контакте с отражающей поверхностью эти кванты разлетались бы в разные стороны и луч света превратился бы в пузырь света. Если бы луч света состоял из квантов, вращающихся в противоположные стороны перпендикулярные направлению их движения, то после контакта с отражающей поверхностью луч света бы раздвоился на два луча. Но ни того ни другого не происходит. Свет отражается по закону отражения, демонстрируя этим, что луч света состоит из невращающихся частичек (квантов), обладающих упругостью, но не обладающих вращением. Таким образом, всеми признаётся, что фотон обладает электрическим и магнитным монополями. Эксперименты Комптона показали, что энергия и импульс в элементарных процессах сохраняются всегда. Его расчёты изменения частоты падающего фотона в комптоновском рассеянии выполняются с точностью до 11 знаков. Одним из экспериментов, подтверждающим квантование поглощения света, стал опыт Вальтера Боте, проведённый им в 1925 году. В этом опыте тонкая металлическая фольга облучалась рентгеновским излучением (фотонами) низкой интенсивности. При этом фольга сама становилась источником слабого вторичного излучения. Исходя из классических волновых представлений, это излучение должно распределяться в пространстве равномерно во всех направлениях. В этом случае два счётчика, находившиеся слева и справа от фольги, должны были фиксировать его одновременно. Однако результат опыта оказался прямо противоположным: излучение фиксировалось либо правым, либо левым счётчиком и никогда обоими одновременно. Следовательно, поглощение и отражение идёт отдельными квантами. Опыт, таким образом, подтвердил исходное положение фотонной теории излучения, и стал, тем самым, ещё одним экспериментальным доказательством квантовых свойств излучения. [http://ru.wikipedia.org/wiki/% D0%91%D0 % BE%D1%82%D0%B5,%D0D0%B0%D0%46BB%D1%8%D1%82%D0%B5%D1%80].Опыт подтвердил: 1. материалистическую природу квантов материи. 2.Отсутствие у фотонов вращения.