Читать «О науке» онлайн - страница 5
Анри Пуанкаре
Противоречие поразит нас еще больше, если мы откроем какую-нибудь математическую книгу: на каждой странице автор будет выражать намерение обобщить уже известную теорему. Значит ли это, что математический метод ведет от частного к общему, и каким образом можно называть его тогда дедуктивным?
Наконец, если бы наука о числе была чисто аналитической или могла вытекать аналитически из небольшого числа синтетических суждений, то достаточно сильный ум мог бы, по-видимому, с первого взгляда заметить все содержащиеся в них истины; более того: можно было бы даже надеяться, что когда-нибудь для их выражения будет изобретен язык настолько простой, что эти истины будут непосредственно доступны и заурядному уму.
Если отказаться от допущения этих выводов, то необходимо придется признать, что математическое умозаключение само в себе заключает род творческой силы и что, следовательно, оно отличается от силлогизма.
И отличие это должно быть глубоким. Так, например, мы не найдем ключа к тайне в многократном применении того правила, по которому одна и та же операция, одинаково примененная к двум равным числам, дает тождественные результаты.
Все эти формы умозаключения — все равно, приводимы ли они к силлогизму в собственном смысле или нет, — сохраняют аналитический характер и поэтому являются бессильными.
II
Вопросы этого рода обсуждаются давно. Еще Лейбниц пытался доказать, что 2 да 2 составляют 4; рассмотрим вкратце его доказательство.
Я предполагаю, что определены число 1 и операция
Я определяю затем числа 2, 3 и 4 равенствами:
(1) 1 + 1 = 2; (2) 2 + 1 = 3; (3) 3 + 1 = 4.
Я определяю также операцию
(4)
Установив это, мы имеем
2 + 2 = (2 + 1) + 1 | (определение (4)), |
(2 + 1) + 1 = 3 + 1 | (определение (2)), |
3 + 1 = 4 | (определение (3)), |
откуда
2 + 2 = 4 (что и требовалось доказать).
Нельзя отрицать того, что это рассуждение является чисто аналитическим. Но спросите любого математика, и он вам скажет: «Это, собственно говоря, не доказательство, а проверка». Мы просто ограничились сближением двух чисто условных определений и констатировали их тождество; ничего нового мы не узнали.
Равенство 2 + 2 = 4 могло подлежать проверке только потому, что оно является частным случаем. Всякое частное выражение в математике всегда может быть таким образом проверено. Но если бы математика должна была сводиться к ряду таких проверок, то она не была бы наукой. Ведь шахматист, например, не создает еще науки тем, что он выигрывает партию. Всякая наука есть наука об общем.