Читать «О науке» онлайн - страница 11

Анри Пуанкаре

Этому процессу «конструирования» справедливо приписывали большое значение и желали в нем видеть необходимое и достаточное условие прогресса точных наук.

Несомненно, что оно необходимо; но оно не является достаточным.

Для того чтобы конструирование могло быть полезным, чтобы оно не было бесплодным трудом для разума, чтобы оно могло служить опорой для дальнейшего поступательного движения, надо, чтобы оно прежде всего обладало некоторым родом единства, которое позволяло бы видеть в нем нечто иное, чем простое наращивание составных частей. Говоря точнее, надо, чтобы в анализе конструкции выявлялось некоторое преимущество сравнительно с анализом ее составных элементов.

В чем же может заключаться это преимущество?

Зачем, например, надо рассуждать не об элементарных треугольниках, а о многоугольнике, который ведь всегда разложим на треугольники?

Это делается потому, что существуют свойства, принадлежащие многоугольникам с каким угодно числом сторон, которые можно непосредственно применить к любому частному многоугольнику.

Весьма часто, напротив, только ценой продолжительных усилий можно бывает найти эти свойства, изучая непосредственно соотношения элементарных треугольников. Знание общей теоремы освобождает нас от этих усилий.

Если четырехугольник есть не что иное, чем соединенные рядом два треугольника, то это потому, что он принадлежит к роду многоугольников.

Конструирование становится интересным только тогда, когда его можно сравнить с другими аналогичными конструкциями, образующими виды того же родового понятия.

Необходимо еще, чтобы было возможно доказывать родовые свойства, не будучи вынужденным обосновывать их последовательно для каждого вида.

Чтобы достигнуть этого, необходимо вновь подняться от частного к общему, пройдя одну или несколько ступеней.

Аналитический процесс «конструирования» не вынуждает нас опускаться ниже, а оставляет все на том же уровне.

Мы можем подняться выше только благодаря математической индукции, которая одна может научить нас чему-либо новому. Без помощи такой индукции, отличной в известных отношениях от индукции физической, но столь же плодотворной, как и последняя, процесс конструирования был бы бессилен создать науку.

Заметим, наконец, что эта индукция возможна только тогда, когда одна и та же операция может повторяться бесконечное число раз. Вот причина, почему теория шахматной игры никогда не может стать наукой; там различные ходы одной и той же партии не похожи друг на друга.

Глава II

Математическая величина и опыт

Если вы хотите знать, что понимают математики под непрерывностью, то ответа следует спрашивать не у геометра. Геометр всегда так или иначе старается представить себе фигуры, которые он изучает, но его представления являются для него только орудием; занимаясь геометрией, он употребляет пространство так же, как употребляет мел; поэтому следует остерегаться приписывать слишком большое значение случайностям, которые часто имеют не больше значения, чем белизна мела.