Читать «О науке» онлайн - страница 10

Анри Пуанкаре

Но скажут: если чистый опыт не может оправдать суждения путем рекурренции, то будет ли то же самое относительно опыта, поддерживаемого индукцией? Мы последовательно видим, что теорема верна для чисел 1, 2, 3 и т. д.; мы говорим: закон очевиден, и присваиваем ему тот же ранг, какой свойствен всякому физическому закону, опирающемуся на наблюдения, число которых очень велико, но все же ограничено.

Нельзя не признать, что здесь существует поразительная аналогия с обычными способами индукции. Однако есть и существенное различие. Индукция, применяемая в физических науках, всегда недостоверна, потому что она опирается на веру во всеобщий порядок Вселенной — порядок, который находится вне нас. Индукция математическая, т. е. доказательство путем рекурренции, напротив, представляется с необходимостью, потому что она есть только подтверждение одного из свойств самого разума.

VII

Выше я сказал, что математики стараются всегда обобщать полученные ими предложения; например, мы только что доказали равенство

a + 1 = 1 + a,

а затем воспользовались им для обоснования равенства

a + b = b + a,

которое, очевидно, является более общим.

Таким образом, математика, как и другие науки, может идти от частного к общему.

Это — факт, который в начале этого сочинения казался нам непонятным, но который теряет всю таинственность для нас, после того как была установлена аналогия между доказательством путем рекурренции и между обычной индукцией.

Нет сомнения, что математическое рассуждение посредством рекурренции и индуктивное физическое рассуждение покоятся на различных основаниях; но ход их параллелен — они движутся в том же направлении, т. е. от частного к общему.

Рассмотрим это несколько ближе. Чтобы доказать равенство

a + 2 = 2 + a,

нам достаточно применить два раза правило

a + 1 = 1 + a (1)

и написать

a + 2 = a + 1 + 1 = 1 + a + 1 = 1 + 1 + a = 2 + a. (2)

Однако равенство (2), выведенное таким образом чисто аналитически из равенства (1), не есть просто его частный случай: это нечто иное.

Поэтому нельзя сказать, что мы даже в действительно аналитической и дедуктивной части математических рассуждений двигались от общего к частному в обычном смысле слова.

Два члена равенства (2) суть просто сочетания, более сложные, чем два члена равенства (1), и анализ служит только для отделения элементов, которые входят в эти сочетания, и для изучения их соотношений.

Следовательно, математики действуют, применяя процесс «конструирования»; они «конструируют» сочетания все более и более сложные. Возвращаясь затем путем анализа этих сочетаний — этих, так сказать, совокупностей — к их первоначальным элементам, они раскрывают отношения этих элементов и выводят отсюда отношения самих совокупностей.

Это — процесс чисто аналитический, однако он направлен не от общего к частному, ибо совокупности, очевидно, не могут быть рассматриваемы как нечто более частное, чем их составные элементы.