Читать «Нулик - мореход» онлайн - страница 53

Владимир Артурович Левшин

Так оно с тех пор и пошло. Одни сутки мастерю по два шарика, другие - по два кубика. А чтобы счёт дням не потерять, каждая пара шариков и кубиков у меня номерами помечена: 1, 2, 3 и так далее. Дескать, сделано в первые сутки, на вторые или там на двадцать пятые...

Матрос кончил рассказывать, тяжело вздохнул и задумался.

- Н-да, незавидная у вас работка, - сказал Пи. - И как только вам удаётся делать одни кубики и шарики всё больше и больше, а другие - мал мала меньше? Ведь самый малюсенький из них, поди, и в микроскоп не разглядишь!

- На то и пролив Бесконечности, - отвечал тот.

- А где же вы их храните? - поинтересовался я.

- Где? - переспросил матрос и вдруг засмеялся: - А нигде! До вчерашнего дня стояли они у меня на берегу друг за дружкой, по росту. А нынче ночью надумал я бежать. Надоели мне эти приказы-капризы хуже горькой редьки! Ну, сложил я все шарики и кубики по порядку один в другой, и - бултых в воду...

- Не может быть! - в один голос закричали мы с Пи. - Неужто мы так и не увидим вашей работы?!

- Кто его знает! - уклончиво хмыкнул матрос. - Коли очень захотите, может, и увидите. Не наяву, так в уме...

- Вы хотите сказать, в воображении? - уточнил я.

- Вот-вот, - обрадованно закивал матрос. - С воображением да с соображением чего не увидишь!

- Ваша правда, - подтвердил капитан. - Но вы забыли про знания. Чтобы вообразить себе что-нибудь как следует -ну хоть ваши кубики  и шарики, необходимо кое-что смыслить в геометрии. Надо, например, знать, что, с точки зрения геометрии, шар только тогда считается вписанным в куб по-настоящему, когда поверхность его касается всех шести граней куба, иначе говоря, имеет с ним шесть точек касания. Если же речь идёт о шаре, описанном вокруг, или, как говорят математики, около куба, значит, подразумевается, что поверхность его непременно проходит через все восемь вершин куба.

- Э, нет, - не согласился я, - раз шар описан около куба, стало быть, куб у него внутри. Но тогда с вершинами куба соприкасается не поверхность шара, а его внутренность...

- Вероятно, ты хотел сказать, внутренняя сторона его оболочки, - подсказал капитан. - Что ж, ты был бы прав, если бы речь шла о мячике - резиновом или, там, целлулоидовом, в который вписан кубик - деревянный или, скажем, пластмассовый. Иначе говоря, если бы имелись в виду тела физические. Но мы-то говорим о телах геометрических! Стало быть, у них не оболочка, а поверхность. А поверхность, как ты уже знаешь, двухмерна и толщины не имеет...

Тут я почему-то вспомнил треугольную тень от вымпела и перевёл разговор на другую тему.

- Интересно,- спросил я, обращаясь к матросу,- что вы смастерили под самый конец: шарики или кубики?