Читать «Нулик - мореход» онлайн - страница 34

Владимир Артурович Левшин

- Так-то! -сказал он ядовито.- Небось палубы пополам не перегнёшь!

- Уж конечно,- подтвердил я.- Но что же нам делать?

- Что за вопрос! - вскипел он.- А циркуль на что? Он засек циркулем две дужки из точки А и две - из точки В, а точки пересечения дужек обозначил буквами С - НАД отрезком АВ и Д - это уж ПОД ним.

- Вот вам и четыре взмаха циркулем,-сказал он.-Остаётся один взмах линейкой.

Тут он схватил линейку, соединил точки С и Д и посмотрел на нас взглядом полководца, выигравшего битву.

- То-то, бом-брам-фок! С одной задачей покончено. Переходим ко второй.

Он снова вычертил отрезок АВ, а повыше и чуть правее точки А поставил ещё одну точку - С.

- Задачка - проще некуда,-заявил он - Предлагается провести через точку С отрезок прямой, параллельный отрезку АВ. Ну-ка, раз, два, взяли!

На этот раз нам повезло: мы почему-то сразу догадались, что засечку следует делать из точки С. Только на какое расстояние раздвинуть циркуль? Оказалось, на такое, чтобы уголёк пересек отрезок АВ. Так мы и сделали, а точку пересечения обозначили буквой Д.

Один взмах был позади, и мы перешли к следующему: воткнули ножку циркуля в это самое Д и тем же раствором провели вторую дужку, которая пересекла отрезок АВ чуть правее. Эту точку обозначили буквой Е.

Потом иголка воткнулась в точку Е, а ножка циркуля описала дугу над отрезком и засекла дужку примерно на уровне точки С. Это был уже третий взмах. Оставался четвёртый, и последний.

Тут циркуль снова вонзился в точку С и тем же раствором провёл четвёртую дужку, которая пересеклась с предыдущей. Эту четвёртую точку окрестили буквой F.

- Циркуль отставить! Линейку на абордаж! - скомандовал Игрек и соединил отрезком прямой точки С и F. Потом он отшвырнул линейку и заорал: - Отбой! Отрезок CF параллелен АВ!

Теперь можно было приступать к нашему чертежу, но штурман спохватился, что не познакомил нас с ещё одной, совсем крохотной, но необходимой задачкой на построение.

- Так как эта третья задачка сводится к двум первым, будете решать сами,-сказал он и снова начертил отрезок АВ.- Требуется разделить данный отрезок на несколько одинаковых частей. Хоть на три.

Что и говорить, не сразу нам это далось, зато теперь-то уж мы знаем, как это делается.

Берётся линейка, и к отрезку АВ из точки А проводится другой отрезок, любой длины и под любым острым углом. На нём, опять-таки от точки А, но уже с помощью циркуля откладываются ещё три совершенно одинаковых отрезка: АС, СД и ДЕ. Потом точки Е и В соединяются линейкой, а через точки Д и С проводятся отрезки, параллельные ЕВ (точки пересечения этих отрезков с АВ мы обозначили буквами К и F).

Так мы научились делить отрезок на равные части.

- Да, но почему эти отрезки равны между собой? Из чего это следует? Да из того, бом-брам-фок, что полученные нами треугольники AFC, АКД и ABE подобны! Ведь углы у них конгруэнтны! -загремел штурман.- А раз так - значит, стороны этих треугольников соответственно пропорциональны.