Читать «Маленькая книга о черных дырах» онлайн - страница 53

Стивен Габсер

Рис. 4.1. Влияние увлечения системы отсчета на падение по геодезической в керровскую черную дыру. Показана геодезическая, по которой происходит падение в керровскую черную дыру; слева (справа), частица имеет положительный (отрицательный) момент импульса по отношению к направлению вращения черной дыры.

Световые сигналы от зонда будут краснеть и испытывать замедление времени в соответствии с решением Шварцшильда. Но теперь будет казаться, что они выходят из некоторой точки на горизонте, вращающейся с фиксированной угловой скоростью. Для зондов, сброшенных под любым углом, эта скорость была бы одинаковой, хотя у горизонта они все оказались бы в соответственно различных положениях по долготе. Наблюдения углового движения падающих зондов – один из способов измерить скорость вращения черной дыры.

Наблюдатель, находящийся на падающем извне зонде, заметил бы, что он начинает вовлекаться в движение вокруг черной дыры. Как и в шварцшильдовском пространстве-времени, он достигнет горизонта и пересечет его за конечное время, которое он сможет измерить по своим часам. Таким образом, все еще существует бесконечная степень несоответствия между скоростью хода времени для наблюдателя, пересекающего горизонт, и для удаленного наблюдателя. Больше того, к моменту, когда наблюдатель на зонде пересечет горизонт, с его точки зрения он сделает это, совершив конечное число оборотов. А внешний наблюдатель никогда не увидит, как зонд пересечет горизонт: с его точки зрения, зонд будет все теснее прижиматься к горизонту, бесконечно продолжая обращаться вокруг него с постоянной угловой скоростью. Так что и здесь мы снова сталкиваемся с бесконечным несоответствием между локальными и удаленными измерениями количества оборотов зонда вокруг оси вращения черной дыры.