Читать «Маленькая книга о черных дырах» онлайн - страница 105
Стивен Габсер
Недавно Хуан Малдасена и Леонард Сасскинд внесли предложение, которое должно более тесно увязать энтропию запутанности с энтропией черной дыры. Вот в чем это предложение состоит. Вспомним парадокс ЭПР, где два спина были вначале запутаны, а затем разделены, и парадоксальным образом ни один из них не имел определенного квантового состояния сам по себе, хотя оба вместе его имели. Каждый спин является кубитом, и каждый сам по себе имеет равное кубиту количество энтропии. Не могли бы мы предположить, что на некотором микроскопическом уровне каждый из них является черной дырой и что их запутанность геометрически проявляется в виде кротовой норы между ними? Тут есть два очевидных возражения. Во-первых, черная дыра только с одним кубитом энтропии так мала, что геометрические соображения могут для нее не иметь никакого значения. Во-вторых, как уже говорилось в главе 3, кротовые норы непроходимы. Чтобы понять, как можно обойти эти возражения, давайте сначала представим себе системы большего размера с большим числом возможных квантовых состояний и, следовательно, с большими значениями энтропии. Но при этом будем настаивать на том, что две из этих более крупных систем, которыми распоряжаются, как обычно, наши Алиса и Боб, идеально запутаны, так что их объединенное квантовое состояние точно определено. Выше мы в качестве примеров систем больших размеров брали бруски чистого магния, но теперь мы хотим использовать более сложное состояние вещества, которое через некоторое время должно сколлапсировать в черную дыру. Короче говоря, Алиса и Боб оказываются вдалеке друг от друга, каждый по отдельности в окрестности своей черной дыры, и по крайней мере значительная часть энтропии каждой из этих черных дыр обязана своим существованием квантово-механической запутанности между этими двумя системами. Затем мы предполагаем, что эти черные дыры соединены кротовой норой, и она является геометрическим проявлением их запутанности.
Но как можно было бы проверить эту идею? Рассмотрим мысленный эксперимент, в котором и Алиса, и Боб занимаются измерениями каждый в своей системе. Изучать на близком расстоянии систему, в которой происходит гравитационный коллапс, – рискованная затея, так как, по всей вероятности, в процессе измерений наблюдатель будет всосан в черную дыру. Это безрадостная перспектива даже в концептуальном смысле, так как она исключает возможность для Алисы и Боба выполнить свои измерения и затем сравнить их результаты для того, чтобы убедиться, что их системы действительно были запутаны.