Читать «Критическая масса, как одни явления порождают другие» онлайн - страница 335

Филипп Болл

Все без исключения такие цепочки являются не линейными, а разветвленными и взаимосвязанными. Поступающее в организм «сырье», например, глюкоза, может быть переработано и использовано во множестве метаболических реакций и процессов, причем высокоэнергетические молекулы, созданные в результате расщепления этого сахара, сами затем используются в качестве источника энергии в других метаболических цепочках. Процессы метаболизма в организме объединяются в сеть химических превращений, где конкретное химическое соединение соответствует вершине графа, а реакции (протекающие в основном с участием ферментов) — ребрам графа, связывающим его вершины друг с другом (рис. 16.6).

Группа Барабаши изучила такие сети метаболизма для 43 самых различных типов живых организмов, от бактерий через растения к высшим формам типа червей, и обнаружила, что во всех случаях функция распределения числа связей является безмасштабной, т. е. вероятность обнаружения узлов

Рис. 16.6. Небольшой участок сети, описывающей огромный набор метаболических реакций в живом организме. Вершины соответствуют веществам, которые вступают в реакцию или возникают в ней, а ребра — ферментативным реакциям, преобразующим одни молекулы в другие

с заданным числом связей описывается степенным законом. Это означает, что в сети метаболизма существуют особые центры повышенной связности, играющие принципиальную роль в организации процессов в целом. Молекулы, связанные с такими центрами, и их относительная важность в сети метаболизма оказались одними и теми же для всех живых организмов, что является отражением единства всего процесса эволюции.

Безмасштабная структура метаболических сетей имеет вполне разумное объяснение в рамках эволюционной теории, так как она делает метаболизм относительно нечувствительным к небольшим нарушениям или случайным флуктуациям. Предположим, что в организме произошел сбой в работе одного или двух ферментов, вызванный, например, генетическими дефектами, в результате чего затрудняются или становятся невозможными некоторые важные реакции в сети метаболизма и возникает угроза существованию всего организма в целом. Наличие безмасштабной структуры в такой ситуации позволяет обойти эту сложность и выработать требуемые организму вещества в другой последовательности реакций, что можно считать очень удачным «инженерным» решением природы проблемы «проб и ошибок» в естественном отборе.

С другой стороны, слабость безмасштабных сетей состоит в их чувствительности к хорошо «спланированным» нападениям, целью которых являются узлы сети с высокой связностью, чья гибель приводит к распаду сети. Именно на этом основано действие большинства бактерий. Но это же свойство может быть использовано при разработке лекарств для отражения бактериальной инфекции. Определив «слабые места» бактерий, мы можем направить на них атаку лекарств. Понимание структуры сети метаболизма бактерий станет первым шагом к определению подходящих целей. В этом сценарии мы выступаем в роли цитотеррористов (цито — клетка) и наши намерения, конечно, с нашей, человеческой точки зрения, совершенно оправданны и благи.