Читать «Критическая масса, как одни явления порождают другие» онлайн - страница 206

Филипп Болл

Позднее та же команда физиков из Брукхейвена придумала еще одну красивую и интуитивно понятную модель связанного поведения в много-частичных системах. Им удалось заменить в уравнениях не очень наглядные маятники и пружинки на песчинки, составляющие некую кучу или горку (читатель может представить себе кучку песка, возникающую в песочных часах, или ту, которую он сам насыпает на столе). При некоторой высоте кучки, когда ее склоны становятся достаточно крутыми, добавление даже нескольких песчинок к вершине может вызвать осыпание всей кучки. До этого момента силы трения между песчинками могут удерживать частицы от взаимного смещения, но при некотором строго определенном значении угла наклона склонов (этот угол определяется, естественно, коэффициентом трения) вся система становится неустойчивой. Разумеется, дальнейший процесс более сложней и напоминает механизм цепной реакции, так как

Рис. 10.3. Степенной закон распределения вероятностей для размера лавин в математической модели «кучи песка». Построив зависимость в логарифмических координатах (логарифм размера лавин от логарифма их вероятности), можно легко получить наглядное доказательство степенной зависимости: прямую на рисунке, угол наклона которой равен показателю степенной зависимости. В представленном случае этот показатель близок к -1, что характерно для процессов с самоорганизующейся критичностью. Крупномасштабные события, соответствующие правой части графика, являются менее вероятными, поэтому статистика для них менее достоверна, и на графике появляются все более заметные зигзаги. Теоретическая идеальная прямая показана пунктиром.

каждая частица в своем движении смещает другие и т.д. В зависимости от параметров и условий модели в такие лавины могут быть вовлечены десятки частиц, струи песчинок и целые участки кучек песка.

Существенным для темы этой главы является то, что в модели образования лавины не указаны конкретные следствия добавления конкретной песчинки — воздействие на соседние песчинки, начало процесса схода лавины на одном из склонов и т.д. Авторы предложили простую математическую модель кучи песчинок, исследовали ее поведение на ЭВМ и, замерив распределение песчаных лавин по размерам, показали, что оно описывается степенным законом, как показано на рис. 10.3. Очень большие лавины, конечно, происходят значительно реже, чем малые, однако теоретически возможно образование лавин любого размера. Другими словами, флуктуации кучи являются безмасштабными (в указанном смысле), что явно представляет собой некий аналог критического состояния.

С физической точки зрения ясно, что каждая лавина высвобождает внутренние «напряжения» в куче, уменьшая угол наклона и восстанавливая устойчивость системы. Особенностью модели является то, что восстанавливается только локальная устойчивость в заданный момент времени, так как любая следующая песчинка может стать триггером, спусковым механизмом для другой лавины на другом участке кучи. Такая система постоянно балансирует на грани очень шаткого равновесия, готового нарушиться в любой следующий момент, но не может уйти от этой грани на далекое расстояние. Именно поэтому физики назвали это критическое состояние самоорганизующимся, что принципиально отличает его от описанного ранее критического состояния газа и жидкости, которое можно было бы назвать самоуничтожающимся, поскольку оно подготавливает систему к мгновенному переходу при малейшем воздействии в одно из обычных, устойчивых состояний.