Читать «Критическая масса, как одни явления порождают другие» онлайн - страница 198
Филипп Болл
Такое странное поведение физики называют дивергенцией — безудержным ростом некоторых характеристик к бесконечности. Такую дивергенцию для коэффициентов сжимаемости и теплоемкости в критической точке предсказывала еще теория ван дер Ваальса. Она также объясняла, почему это происходит.
Количественно скорость роста параметров описывается так называемым критическим показателем, рассчитываемым из экспериментальных данных по изменению, например, теплоемкости вблизи критической точки. Поразительно, но критический показатель при этом оказывается одним и тем же для всех флюидов. Критический показатель для сжимаемости отличается от такового для теплоемкости, но опять же оказывается одинаковым для всех флюидов. То есть эти показатели являются «универсальными».
Для понимания физического смысла вводимых критических показателей читателю придется вспомнить несколько элементарных математических понятий. Математическая запись так называемой степенной зависимости (или функции) имеет очень простой вид у = хп, где п и называется показателем (степени). Забавно, что по-английски степенная (ее еще называют показательной) функция называется power law, что может вызывать неожиданную ассоциацию с ключевым понятием власти и могущества power в философии Гоббса. Это совпадение, конечно, совершенно случайно и не имеет скрытого смысла, так как речь идет о сугубо математическом термине. Показатель п демонстрирует, во сколько раз возрастает значение функции у при удвоении значения переменной х. Понятно, что большее значение показателя соответствует более быстрому нарастанию изучаемой величины. Если, например, показатель п равен 2, то с удвоением значения х величина у возрастает в 22 = 4 раза, при п = 3 величина у возрастает уже в 21 = 8 раз и т. д. Кому-то может показаться более удобным следующее объяснение: степенной закон с показателем п - 3 связывает объем куба с длиной его грани — при удвоении грани вдвое объем куба возрастает в 8 раз.
Каждое свойство флюида, изменяющееся вблизи критической точки, делает это в соответствии с критическим показателем, одинаковым для всех флюидов, причем некоторые параметры не увеличиваются до бесконечности, а, наоборот, устремляются к нулю91, как, например, разница в плотности между жидкостью и газом или намагниченность около точки Кюри. Это не должно смущать читателя, поскольку такое поведение тоже прекрасно описывается тем же степенным законом, но с отрицательными значениями показателя п.
Теория ван дер Ваальса предсказывала степенную зависимость некоторых характеристик вблизи критической точки «жидкость — газ», но не позволяла точно вычислять значения критических показателей. Другими словами, теория обнаруживала «склоны» и «подъемы», но не говорила о том, насколько они «круты».
Это обнаружилось в 1890-х, когда Жюль Вершафельт в той же Лейденской лаборатории ван дер Ваальса провел исключительно точные измерения критического поведения одного из жидких углеводородов — изопентана и обнаружил, что критический показатель для плотности составляет лишь -0,343, в то время как теория ван дер Ваальса предсказывала -0,5. Такая разница может показаться несущественной, собственно говоря, именно так посчитали многие современники Вершафельта. Однако позднее, когда выяснилось, что критические показатели универсальны для всех жидкостей, физики поняли, что столкнулись с каким-то очень важным и фундаментальным свойством вещества вообще. Естественно, сразу возник вопрос, что же было упущено в прекрасной теории ван дер Ваальса, что не позволило точно описать поведение систем в критической точке.