Читать «Критическая масса, как одни явления порождают другие» онлайн - страница 197

Филипп Болл

ФИЗИКА НА ЛЕЗВИИ НОЖА

Теория ван дер Ваальса объяснила существование критических точек, связав их с состоянием, где не существует разницы между жидкостью и газом, однако она ничего не говорит нам о странных явлениях, происходящих в окрестности этих точек. В частности, стоит упомянуть, что при переходе через эту точку жидкости становятся на вид мутными, и это явление (физики называют его критической опалесценцией) долго не находило объяснения.

Другой чрезвычайно важной как для экспериментаторов, так и для теоретиков особенностью является исключительная чувствительность систем в окрестности критических точек, когда физическое состояние начинает зависеть от малейших изменений внешних условий. Рассмотрим это явление на очень простом примере. Сжимая вещество, вы просто уменьшаете его объем, а величина сопротивления сжатию обычно служит важной физической характеристикой вещества и называется сжимаемостью. Известно, что резиновый шарик сжимается легко, стальной шарик почти не сжимается, газ сжимается гораздо легче жидкости и т. п. Проблема состоит в том, что в критической точке, где газообразное и жидкое состояния неразличимы (это состояние, как мы помним, физики называют флюидом), сжимаемость системы формально стремится к бесконечности! Другими словами, медленно и очень осторожно сжимая флюид в критической точке, мы могли бы... просто сжать его в точку. Этот парадоксальный вывод нельзя проверить экспериментально по той простой причине, что поддерживать вещество в критическом состоянии чрезвычайно трудно из-за его крайней неустойчивости. С другой стороны, экспериментаторы многократно наблюдали, как сжимаемость среды в окрестности этой точки начинает стремительно возрастать.

Примерно так же обстоят дела с чувствительностью систем к тепловым воздействиям. Для повышения температуры мы обычно нагреваем систему, грубо говоря, закачивая в нее энергию. Количество теплоты, необходимой для повышения температуры вещества на один градус, является одной из самых распространенных характеристик индивидуальных веществ и называется теплоемкостью. Например, вода обладает очень высокой теплоемкостью, в чем мы убеждаемся каждое утро, с нетерпением ожидая, когда же наконец закипит вода в чайнике. В критической точке теплоемкость веществ начинает немыслимо возрастать, т. е. среда в критическом состоянии становится каким-то немыслимым «стоком» для энергии, и вы можете затратить на его нагрев сколько угодно энергии и не повысить температуру даже на ничтожную долю градуса. Критическая точка отделяет ультраохлажденный жидкий гелий от удивительного состояния, называемого сверхтекучим (см. гл. 4), внезапное резкое увеличение теплоемкости жидкого гелия при температуре около двух градусов выше абсолютного нуля неопровержимо свидетельствует о приближении к этой критической точке.