Читать «Красота в квадрате» онлайн - страница 25

Алекс Беллос

Цифра 1 встречается чаще цифры 2 не только на первой, но и на второй, третьей, четвертой и фактически любой позиции в записи числа. На представленном ниже рисунке продемонстрирована частотность вторых цифр в процентном выражении (среди которых есть теперь и цифра 0). Различия между этими показателями не столь ощутимы, как в случае первых цифр, но их все же можно использовать в целях диагностики, скажем в процессе анализа финансовых данных и результатов выборов. По мере продвижения к следующим позициям данные о частоте появления цифр стремятся к одному значению. Следовательно, закон Бенфорда касается не только первых цифр. В мире действительно гораздо больше единиц!

В суде Доррелла часто просят обосновать закон Бенфорда. В таких случаях Даррелл становится перед лекционной доской и начинает считать от единицы и далее, записывая названные цифры. При этом он чувствует себя школьным учителем, проводящим урок математики. «Это просто выводит из себя судью и адвоката», — иронизирует он.

Мы можем сделать то же самое. Вот числа от 1 до 20:

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20

Больше половины этих чисел начинаются с цифры 1, поскольку от 11 до 19 все числа начинаются с единицы. Продолжаем считать. Где бы мы ни остановились, чисел с первой цифрой 1 будет не меньше, чем чисел с первой цифрой 2, поскольку для того, чтобы добраться до второго десятка, второй сотни или второй тысячи, необходимо назвать все числа первого десятка, первой сотни и первой тысячи. Точно так же чисел с первой цифрой 2 будет не меньше, чем чисел с первой цифрой 3 и т. д., вплоть до чисел с первой цифрой 9. Такое обоснование помогает понять закон Бенфорда на интуитивном уровне, и его вполне достаточно для суда как государственного органа, а вот для суда математики требуется более строгое доказательство.

Одно из самых поразительных свойств закона Бенфорда — что последовательность цифр не зависит от единицы измерения. Когда массив финансовых данных подчиняется закону Бенфорда в случае, если они выражены в фунтах, он будет подчиняться этому закону и после их конвертации в доллары. Если массив географических данных соответствует закону Бенфорда в километрах, он будет соответствовать ему и в случае их представления в милях. Это свойство, обозначаемое термином «масштабная инвариантность», верно всегда, поскольку числа, взятые из газет, банковских счетов и атласов мира показывают одно и то же распределение первых цифр независимо от используемых систем измерения и валюты.