Читать «Как предсказать курс доллара. Расчеты в Excel для снижения риска проигрыша» онлайн - страница 22
Владимир Георгиевич Брюков
4.1. Проверка графическим способом остатков, полученных после решения уравнения регрессии, на наличие в них автокорреляции. В случае обнаружения автокорреляции в остатках это уравнение регрессии не годится для прогнозирования. Для устранения автокорреляции в остатках существует ряд способов. Но мы для ее устранения будем решать двухфакторное уравнение регрессии, включив в него новую переменную ‑ «Остатки с лагом в один день».
Используем алгоритм № 6 «Оценка адекватности уравнения регрессии» для анализа информации, полученной после вывода итогов по двухфакторному уравнению регрессии. Судя по таблице 3.2, R2 в данном случае оказался равен 0,9808, Иначе говоря, это уравнение регрессии объясняет 98,08% всех колебаний зависимой (результативной) переменной «Курс доллара к рублю». При этом нормированный R2 равен 0,9805, то есть больше нормированного R2=0,8923, полученного после решения однофакторного уравнения. Следовательно, по этому критерию двухфакторному уравнению, безусловно, нужно отдать предпочтение.
Таблица 3.2. Регрессионная статистика
Источник: расчеты автора
В таблице 3.3 нас интересует Значимость F, которое первоначально Excel дает в экспоненциальном виде. Но с помощью опции ФОРМАТ ЯЧЕЕК мы преобразовали его в числовой вид и убедились, что Значимость F =0,00. Следовательно, в данном случае значимость F меньше 0,01, то есть можно сделать вывод, об 1% статистической значимости полученного нами двухфакторного уравнения регрессии (или 99% уровнем надежности).
Таблица 3.3. Дисперсионный анализ
Источник: расчеты автора
В таблице 3.4 надо обратить внимание на P-Значения коэффициентов уравнения регрессии, которые первоначально Excel дает в экспоненциальном виде. Но с помощью опции ФОРМАТ ЯЧЕЕК мы преобразовали их в числовой вид. При этом все три P-Значения равны 0,00. Следовательно, в данном случае P-Значения меньше 0,01, то есть можно сделать вывод, об 1% статистической значимости всех коэффициентов полученного нами двухфакторного уравнения регрессии (или 99% уровнем надежности). При этом все коэффициенты данного уравнения регрессии при переходе от столбца Нижние и к столбцу Верхние (при заданном уровне надежности) не меняют свой знак. Заметим, что столбцы Нижние и Верхние дают нижнюю и верхнюю границу интервальной оценки величины коэффициента регрессии. И если у них будут разные знаки, то прогнозировать по такому уравнению регрессии будет невозможно, поскольку мы будем получать противоречивые оценки.
Используя коэффициенты из таблицы 3.4, двухфакторное уравнение регрессии в общем (буквенном) виде: Y=AXt+BXo+C легко преобразовать в числовой вид (с округлением после запятой на четыре знака):
Y=0,1249Xt+0,9426Xo+32,0329
Интерпретация этого уравнения регрессии следующая: 1. За период с 27 июня по 28 ноября 2014 года с каждым торговым днем (увеличением номера торгового дня Xt на одну единицу) курс доллара Y в среднем вырастал на 12,49 копейки; 2. Рост величины остатка с лагом в один день Xo на 1 рубль за этот же период приводил к росту курса доллара Y в среднем на 94,26 копейки; 3. При исходном уровне, то есть расчетным значением курса доллара к рублю перед началом торгов 27 июня 2014 года, равном 32,0329 рублей.