Читать «Как предсказать курс доллара. Расчеты в Excel для снижения риска проигрыша» онлайн - страница 20
Владимир Георгиевич Брюков
2.4. Работа над закреплением пройденного материала
С учетом этого полученной в этой главе информации предлагаю читателю проверить свои знания, решив следующие два задания.
Задание 2.1
Шаг 1. Решите однофакторное уравнение регрессии по данным по курсу евро к рублю, которые Вы уже загрузили, решая задание 1.1.
Шаг 2. Проверьте в целом статистическую значимость уравнения регрессии, решенного по данным по курсу евро к рублю, а также отдельных включенных в него переменных.
Шаг 3. Дайте интерпретацию полученному уравнению регрессии.
Шаг 4. Найдите среднюю ошибку аппроксимации по остаткам уравнения регрессии, решенного по данным по курсу евро к рублю.
Шаг 5. Проверьте графическим способом автокорреляцию в остатках уравнения регрессии, решенного по данным по курсу евро к доллару. Оцените с учетом автокорреляции адекватность полученного уравнения регрессии.
Задание 2.2
Шаг 1. Решите однофакторное уравнение регрессии по данным по курсу евро к доллару, которые Вы уже загрузили, решая задание 1.2.
Шаг 2. Проверьте в целом статистическую значимость уравнения регрессии, решенного по данным по курсу евро к доллару, а также отдельных включенных в него переменных.
Шаг 3. Дайте интерпретацию полученному уравнению регрессии.
Шаг 4. Найдите среднюю ошибку аппроксимации по остаткам уравнения регрессии, решенного по данным по курсу евро к доллару.
Шаг 5. Проверьте графическим способом автокорреляцию в остатках уравнения регрессии, решенного по данным по курсу евро к доллару. Оцените с учетом автокорреляции адекватность полученного уравнения регрессии.
Глава 3. Как устранить автокорреляцию в остатках и решить двухфакторное уравнение регрессии
3.1. Решаем двухфакторное уравнение регрессии
В главе 2 мы выяснили, что в однофакторном (с одной независимой переменной «Порядковый номер торгового дня») уравнении регрессии присутствует автокорреляция в остатках, ухудшающая качество прогноза по курсу доллара. В связи с этим возникает задача ее устранить.
С этой целью включим в уравнение регрессии новую переменную – «Остатки с лагом (отставанием) в один день». Их мы нашли по однофакторному уравнению регрессии, решением которого занимались в главе 2.
Таким образом, вставив вторую переменную в новое уравнение регрессии, попробуем избавиться от автокорреляции в остатках и повысить точность прогноза. В результате получим двухфакторное уравнение линейного тренда:
Y=AXt+BXo+C
Где Y – результативная (зависимая) переменная «Курс доллара к рублю»; C – свободный член уравнения (константа) или исходный уровень тренда; A и B – коэффициенты при независмых переменных; независимые переменные Xt – «Порядковый номер торгового дня» и Xo‑ «Остатки с лагом в один день» (получены после решения однофакторного уравнения регрессии).
На рабочем листе Excel включенные в уравнение регрессии переменные будут размещены следующим образом – см. таблицу 3.1. При этом «Остатки с лагом в один день» для наблюдения 1, то есть для 27 июня 2014 года, приравняем к нулю, поскольку на начало торгов в этот день у нас об их величине нет информации. В то время как остаток по итогам торгов 27 июня 2014 года, полученный после решения однофакторного уравнения, будем использовать для прогнозирования расчетного курса доллара к рублю для наблюдения 2, то есть на 30 июня 2014 года. В свою очередь остаток, полученный по итогам торгов 30 июня 2014 года, будем использовать для прогнозирования расчетного курса доллара к рублю для наблюдения 3, то есть на 1 июля 2014 года. Иначе говоря, остатки, полученные для каждого торгового дня после решения однофакторного уравнения, будем использовать в двухфакторном уравнении, где у нас появится новая переменная ‑ «Остатки с лагом в один день».