Читать «Интерстеллар: наука за кадром» онлайн - страница 142
Кип Торн
Относительно подтверждений внезапного перемешивания океанов и теории, объясняющей причины этого явления, см. [Adkins, Ingersoll, Pasquero 2005]. Стандартная оценка количества органического углерода в океанских придонных отложениях, которые могут оказаться на поверхности в результате перемешивания океанов, принимает во внимание главным образом верхний слой отложений, содержимое которого, в свою очередь, перемешивается за счет океанских течений и активности живых существ. Углерод в этом слое скапливается по мере его осаждения с оценочной скоростью около 1011 кг в год, а среднее время, которое требуется, чтобы этот углерод соединился с кислородом из океанской воды, составляет 1000 лет. Всего получается около 1,5 × 1014 кг – одна двадцатая от общего количества углерода на суше и в поверхностных слоях океана [Emerson, Hedges 1988, Hedges, Keil 1995]. Однако: 1) оценочная величина скорости осаждения может намного отличаться от действительной скорости осаждения; например Энн Баумгарт и другие [Baumgart et al. 2009], руководствуясь тщательными измерениями, оценили скорость осаждения углерода в Индийском океане около Явы и Суматры с фактором неопределенности, равным 50. При экстраполяции на весь Мировой океан это может дать до 3 × 1015 кг в верхнем слое отложений (столько же, сколько на суше и в поверхностных слоях океана); 2) изрядная часть осажденного углерода может попасть в нижний слой отложений, который не смешивается с водой и потому не окисляется, за исключением внезапных перемешиваний океана. Считается, что последний раз такое перемешивание происходило во время последнего ледникового периода, около 20 000 лет назад – этот срок в двадцать раз превышает время окисления углерода в верхнем слое отложений. Так что в нижнем слое может быть в двадцать раз больше органического углерода, чем в верхнем, а значит, и в двадцать раз больше, чем на суше и на поверхности океана. Если новое перемешивание океана выбросит этот углерод на поверхность, где он окислится, этого будет достаточно, чтобы вынудить всех людей на планете задыхаться от нехватки кислорода и умирать от отравления СО2; см. конец . Поэтому такой сценарий возможен, хоть и крайне маловероятен.
Глава 15. Внешний вид червоточины в «Интерстеллар»
По решению Кристофера Нолана червоточина в «Интерстеллар» имеет диаметр в несколько километров. Угловой диаметр червоточины (в радианах) при наблюдении с Земли равен ее диаметру, деленному на расстояние от Земли, которое составляет около девяти астрономических единиц, или 1,4 × 109 км (радиус орбиты Сатурна). Отсюда угловой диаметр червоточины – примерно 2 км / (1,4 × 109 км) = 1,4 × 10–9 радиан, или 0,0003 секунды дуги. Радиотелескопы планово достигают такого углового разрешения с помощью интерферометрии. Наземным оптическим телескопам, использующим технологию под названием «адаптивная оптика», а также космическому телескопу «Хаббл» (по состоянию на 2014 год) доступны лишь угловые разрешения в сто раз слабее. Двойные телескопы в обсерватории Кека на Гавайях с помощью интерферометрии достигают угловых разрешений, которые в десять раз слабее, чем угловой диаметр червоточины, и вполне вероятно, что в эпоху «Интерстеллар» оптическая интерферометрия между более удаленными один от другого телескопами позволит достичь лучших разрешений, чем 0,0003 секунды дуги.