Читать «Значимые фигуры» онлайн - страница 15

Йэн Стюарт

* * *

В математике существует давняя традиция развлечения, в рамках которого математики исследуют всевозможные игры и головоломки. Иногда это делается просто для удовольствия, а иногда подобные легкомысленные задачи помогают понять серьезные концепции. В «Задаче о быках» поднимаются вопросы, не потерявшие актуальности и сегодня. В 1773 г. немецкий библиотекарь Готтхольд Лессинг наткнулся на одну греческую рукопись: стихотворение из 44 строк, приглашающее читателя подсчитать, сколько животных ходит в стаде бога Солнца. Заголовок стихотворения представляет его как письмо от Архимеда к Эратосфену. Начинается оно так:

Сколько у Солнца быков, найди для меня, чужестранец. (Ты их, подумав, считай, мудрости если не чужд.) Как на полях Тринакрийской Сицилии острова тучных Их в четырех стадах много когда-то паслось. Цветом стада различались: блистало одно млечно-белым, Темной морской волны стада другого был цвет, Рыжим третие было, последнее пестрым. И в каждом Стаде была самцов множеством тяжкая мощь, Все же храня соразмерность такую…

Затем в ней перечисляются семь уравнений в стиле:

число белых быков = (1/2 + 1/3) число черных быков + число рыжих быков и следует продолжение:

Сколько у Солнца быков, чужестранец, коль точно ты скажешь, Нам раздельно назвав тучных быков число, Также раздельно коров, сколько каждого цвета их было, Не назовет хоть никто в числах невеждой тебя, Все ж к мудрецам причислен не будешь. Учти же, пожалуй, Свойства какие еще Солнца быков числа. число белых быков + число черных быков = квадратное число, число пестрых быков + число рыжих быков = треугольное число. Если ты найдешь, чужестранец, умом пораскинув, И сможешь точно назвать каждого стада число, То уходи, возгордившись победой, и будет считаться, Что в этой мудрости ты все до конца превзошел.

Квадратные числа – это 1, 4, 9, 16 и т. д., получаются они при умножении натурального числа на само себя. Треугольные числа – это 1, 3, 6, 10 и т. д., образуемые сложением последовательных натуральных чисел, к примеру, 10 = 1 + 2 + 3 + 4. Эти условия образуют то, что мы сегодня называем системой диофантовых уравнений в честь Диофанта Александрийского, который написал о них около 250 г. в книге «Арифметика». Решение должно даваться в целых числах, поскольку вряд ли у бога Солнца в стаде ходит половинка коровы.

Первый набор условий дает бесконечное число возможных решений, в наименьшем из которых божественное стадо насчитывает 7 460 514 черных быков и сравнимое число остальных животных. Дополнительные условия позволяют выбрать среди этих решений и ведут к тому типу диофантовых уравнений, которые известны как уравнения Пелля (глава 6). Здесь нужно найти целые x и y, такие что nx2 + 1 = y2, где n – заданное целое число. К примеру, при n = 2 уравнение принимает вид 2x2 + 1 = y2, а его решениями являются пары чисел x = 2, y = 3 и x = 12, y = 17. В 1965 г. Хью Уильямс, Р. Герман и Чарльз Зарнке при помощи двух компьютеров фирмы IBM нашли наименьшее решение, удовлетворяющее двум дополнительным условиям. Это решение приблизительно равно 7, 76 × 10206544.