Читать «Азбука рисунков природы» онлайн - страница 19

Сергей Афанасьевич Зимов

Рис. 21

Теперь, после рассмотрения этих примеров попытаемся их формализовать и выявить общие условия, необходимые для формирования подобных пространственно-упорядоченных структур.

От конкретного к абстрактному

Мы рассматривали разные процессы и использовали разные слова: «растяжение», «сжатие», «потребность», «разрыв», «складка», «станция»... Однако заметим, схема описания последовательности появления структуры при этом не менялась. Во всех рассмотренных примерах описывалась некоторая меняющаяся во времени пространственная функция, характеризующая какой-то потенциал территории — способность совершать или побуждать действие (сжимающие или растягивающие напряжения, социальные потребности, наличие какого-то ресурса) Ex= f(x, T). Одновременно с этим отмечалось, что существует некоторая функция порогового уровня — прочность на разрыв, арендная плата, порог рентабельности Px = f(x, T). Первоначально везде выполнялось условие Рx > Еx и структурные элементы отсутствовали. Но величины потенциальной функции со временем росли, и в какой-то момент в какой-то точке выполнялось условие Ex = Px — потенциал достигает порогового уровня, и тогда здесь возникал структурный элемент — разрыв, трещина, автостанция и т. д. (для математиков такое явление — это разрыв функции, для физиков — фазовый переход, для философов — переход количества в качество). Появление структурного элемента сопровождалось изменением вокруг него потенциальной функции, происходила ее «разгрузка». При этом рядом появлялись ее новые максимумы. Дальнейшее наращивание ее значений вызывало появление новых элементов и т. д.

Воспользуемся этой универсальной схемой и продолжим анализ закономерностей упорядоченного структурообразования в терминах «потенциал», «порог», «элемент», «разгрузка». Из этой схемы следует, что для прогноза структуры достаточно знать пространственно-временную динамику потенциала и порога (знать функции E и P). Значит, особенности структуры заложены в особенностях этих функций.

Потенциальную и пороговую функцию можно объединить в одну в виде f(Ex, Рх) = Ех — Рх. Назовем ее порогово-потенциальной функцией. Эта функция не имеет положительных значений. По мере роста во времени значений потенциальной функции или снижения значений пороговой функции значения суммарной функции возрастают — кривая f(Ex, Рх) приближается к нулю. Первый структурный элемент появится в момент достижения максимумом этой функции нуля.

В пределах рассматриваемого отрезка порогово-потенциальная функция может иметь несколько максимумов (рис. 22, а). В этом случае при наращивании ее значений структурные элементы будут возникать в этих точках (см. рис. 22, б). Соответственно образовавшаяся структура будет отражением неоднородностей среды. Зоны разгрузки элементов этой структуры не перекрывались, и элементы не влияли на образование друг друга. Это не интересно, здесь нет самоорганизации. Поэтому мы будем рассматривать гладкие случаи, когда первоначально на рассматриваемом отрезке порогово-потенциальная функция имеет не больше одного максимума и монотонно убывает от этого максимума. Более сложные функции с макронеоднородностями всегда можно разбить на такие участки. При таком условии положение первого элемента задано, его появление создает два новых максимума, в которых при наращивании потенциала образуются следующие элементы, и т. д. Расстояние от первоначального до следующего элемента определяется в первую очередь закономерностями разгрузки. Величина разгрузки потенциальной функции вблизи элемента в каждом конкретном случае в зависимости от природы наблюдаемой структуры может подчиняться различным закономерностям. Она может зависеть лишь от расстояния до структурного элемента, а может определяться еще и величинами потенциальной функции — составлять какую-то долю от их значений. Закономерность разгрузки при этом может быть описана линейным, степенным, экспоненциальным законами и т. д. (рис. 23). Ширина зоны разгрузки при формировании многих структур может быть фиксированной и четко выраженной (рис. 24). В этом случае положение новых максимумов, и соответственно элементов, четко определено. Если же разгрузка асимптотическая, то положение следующего максимума будет зависеть от первоначального наклона кривой потенциальной функции: чем он больше, тем ближе элементы (рис. 25). Если наклон потенциальной кривой на ненарушенном участке со временем по мере роста ее значений не изменяется (рис. 26) и остаются неизменными закономерности разгрузки, то в итоге элементы первой генерации будут расположены на одинаковом расстоянии друг от друга. Если эти характеристики закономерно изменяются, то появится структура с соответственно закономерно изменяющимся расстоянием между элементами. Если же потенциальная функция не имеет максимума, не имеет наклона, строгий ритм мы не получим.