Читать «Азбука рисунков природы» онлайн - страница 17

Сергей Афанасьевич Зимов

Изменим условия эксперимента. Начнем охлаждать протяженный брусок, имея максимум охлаждения в центре (рис. 20, а). Здесь напряжения в первую очередь достигнут величины, равной прочности, и появится трещина. Ее появление приведет к формированию вокруг двух новых максимумов напряжений (см. рис. 20, б). Последующее охлаждение бруска приведет к заложению в этих точках новых трещин. Соответственно уже рядом с ними появятся новые максимумы напряжений (см. рис. 20, в) и т. д. Если наклон кривой функции напряжений при этом в ходе их наращивания не изменится, то в итоге появится пространственная периодическая структура.

Рассмотрим теперь другое явление — складки. Их простейший (и неприятный) пример — складки на бумаге: намочите кромку листа — и она начнет разбухать, появятся сжимающие напряжения и складки. Это антипод трещин усыхания. Антипод морозобойных трещин — температурные складки. Чтобы их получить, наклейте полоску липкой пластиковой ленты (но не натягивая ее) на линейку и нагрейте ее. А еще лучше склеить лавсановую ленту с тонкой полиэтиленовой (у этого материала очень высокий коэффициент температурного расширения), и после нагрева вы получите мелкие крутые полиэтиленовые складки. А теперь этот пример идеализируем.

Рис. 20

При равномерном нагреве бесконечного однородного бруска, нежестко прикрепленного к плоскости, в нем возникнут сжимающие напряжения. Как только они достигнут некоторой критической величины, состояние бруска станет неустойчивым, и в каком-то случайном месте появится складка. В окружении этой складки произойдет разгрузка сжимающих напряжений. В это же время, также в случайных местах, будут появляться другие складки. Их зонами разгрузки в скором времени перекроется весь брусок. Строго закономерной структуры в этом случае не возникнет. В случае же неравномерного нагрева бруска так, чтобы фронт нагрева (фронт высоких напряжений) смещался вдоль него, складки будут возникать одна за другой на равных расстояниях.

Другой гипотетический пример. Пусть в литосфере существует протяженный разлом, под которым вдоль него на глубине располагается протяженная зона с породами, насыщенными магмой. Допустим, со временем давление магмы растет, и как только в какой-то точке оно превысит некоторую величину, возникает пробой, магма через разлом прорывается к поверхности — появляется вулкан. В его окружении давление магмы в резервуаре при этом падает — разгружается. Предположим, что «прочность разлома на пробой» по его длине одинакова, а давление магмы в резервуаре в какой-то точке имеет максимум, в стороны же от этой точки вдоль разлома оно плавно снижается. Естественно, что при повсеместном нарастании давления первый вулкан появится в этой точке. В зоне его разгрузки давление магмы упадет, и новый вулкан образоваться здесь уже не сможет. При этом на удалении от первого вулкана (на краях его зоны разгрузки) появятся два новых максимума давления магмы. При росте давления здесь возникнут новые вулканы. В свою очередь, на краю их зоны разгрузки возникнут новые вулканы. В итоге появится упорядоченная структура, в которой элементы (вулканы) будут расположены на расстоянии, равном половине ширины зоны разгрузки.