Читать «Азбука рисунков природы» онлайн - страница 13

Сергей Афанасьевич Зимов

Представим бесконечно длинный однородный упругий брусок, свободно лежащий на ровной поверхности. Начнем его равномерно охлаждать. При этом в нем возникнут растягивающие напряжения σx. Как только они достигнут предела прочности, брусок разорвется. Так как условия однородны, то образование разрыва может произойти в любом месте.

До образования разрыва между бруском и поверхностью силы трения (касательные напряжения) отсутствовали — он лежал свободно, и растягивающие напряжения уравновешивались силами внутреннего сцепления в бруске. После разрыва растягивающие напряжения у образовавшегося края бруска перестают уравновешиваться, и под действием этих неуравновешенных сил края бруска сжимаются, разрыв при этом расширяется. В движение будут вовлекаться все большие отрезки бруска. Это будет происходить до тех пор, пока сила трения, появившаяся под движущейся частью бруска (а она пропорциональна длине этой части), не уравновесит упругие силы, действующие со стороны ненарушенной части бруска, после чего движение краев бруска прекратится. Определим распределение растягивающих напряжений в бруске вблизи разрыва. Поместим центр координат в точку разрыва и выделим вблизи ее элементарный отрезок бруска длиной Δx (рис. 13). Запишем для него баланс сил. Небольшим изменением длины бруска за счет образования разрыва, деформациями сдвига в тонком бруске и силой инерции пренебрегаем. С одной стороны, на вертикальную грань отрезка бруска действует внутренняя сила Fx = σxh, где h — толщина бруска, с другой — Fx-Δx = σx-Δxh. Результирующая этих сил ΔF = Δσxh. Она уравновешивается касательным усилием — силой трения, приложенной к основанию отрезка: Q = TxΔx, где Tx — критическое касательное напряжение в основании бруска. Оно зависит от давления бруска на основание и от шероховатости поверхности. Для принятых однородных условий Tx = const = K. Приравняв силы, получаем KΔx = hΔσx, записав x/dx = K/h; после интегрирования, учитывая, что в точке разрыва σx = 0, получаем σx = K/h*x. Тут же записываем оговоренное выше условие σx <= σпред, т. е. после стабилизации края бруска напряжения вблизи разрыва будут подчиняться линейному закону (рис. 14).

Для нас представляет интерес ширина раскрытия разрыва. По сути, это размер структурного элемента. Рассчитать его несложно. Не вдаваясь в подробности, отметим, что эта величина пропорциональна суммарной разгрузке напряжений вблизи разрыва, суть — высвободившейся при разрыве потенциальной энергии упругонапряженного бруска. Графически ее можно представить площадью фигуры, заштрихованной на рис. 14.

Рис. 13

Рис. 14

Итак, образовался первый разрыв. Брусок однородный и равномерно напряжен. Поэтому тут же вслед за первым разрывом в случайных местах образуются и другие разрывы. Если расстояние между двумя разрывами превышает 2l, то между ними останется неразгруженная полоса, и здесь возникнет еще один разрыв. Если это расстояние меньше 2l, то зоны разгрузки соседних разрывов перекроются и новый разрыв между ними не появится.