Читать «Авиация и космонавтика 2009 01» онлайн - страница 5
Автор неизвестен
В результате теоретических и экспериментальных исследований, направленных на получение высокого аэродинамического качества, было выбрано крыло большого удлинения и умеренной стреловидности, образованное сверхкритическими профилями с большой относительной толщиной. Разработанные совместно с ЦАГИ сверхкритические профили и распределение их относительных толщин по размаху крыла тщательно отрабатывались в общей пространственной схеме обтекания крыла с пилонами и мотогондолами, что позволило обеспечить бескризисное обтекание на крейсерских режимах полета. Большое внимание уделялось снижению аэродинамического сопротивления. Для уменьшения индуктивного сопротивления крылу была придана отрицательная аэродинамическая крутка, на концах установлены специально спрофилированные поверхности (концевые крылышки). Оптимизированы внешние обводы в зонах соединения крыла с фюзеляжем, оперения с фюзеляжем, пилонов мотогондол с крылом. Улучшено качество внешней поверхности, сокращено до минимума количество внешних надстроек (антенн, датчиков, насадок и т.д.) и улучшена их аэродинамическая форма.
В целях снижения потерь аэродинамического качества на балансировку полет на крейсерском режиме должен был выполняться при малых запасах устойчивости, что позволяло уменьшить нагрузку на горизонтальное оперение и фюзеляж. Задняя центровка самолета обеспечивалась системой перекачки топлива из крыльевых баков в килевой бак, при этом возможное изменение центровки получалось почти на 10% САХ. Все эти мероприятия позволили получить расчетное значение аэродинамического качества на крейсерском режиме 18,1, которое было подтверждено в ходе летных испытаний Ту-204.
В конструкции самолета нашли широкое применение новые алюминиевые конструкционные сплавы с улучшенными физико-механическими и ресурсными характеристиками, алюминиево-литиевые и титановые сплавы, новые типы стали, современные композиционные материалы и гибридные материалы. Использование неметаллических материалов в конструкции самолета и его интерьера позволило получить экономию в массе пустого самолета около 1200 кг. Использование длинномерных полуфабрикатов и крупногабаритных листов позволило выполнить консоли крыла без стыков и существенно уменьшить количество стыков на фюзеляже, в результате чего снизилась масса конструкции и улучшилось качество внешней поверхности самолета. Особое внимание было уделено повышению коррозионной стойкости конструкции. Была усовершенствована схема теплозвукоизоляции, в нижней части гермокабины установлены дренажные клапаны, и усилено лакокрасочное покрытие.
Для того чтобы обеспечить возможность эксплуатации самолета на аэродромах с длиной ВПП не превышающей 2500 м и выполнить требования ИКАО по шуму на местности, самолет был оснащен мощной механизацией крыла: двухщелевыми закрылками с большими ходами и предкрылками вдоль всей передней кромки крыла. Механизация крыла обеспечивала достижение больших коэффициентов подъемной силы на взлетно-посадочных режимах при сохранении высокого аэродинамического качества. Предусматривалось управление механизацией крыла как в автоматическом, так и в ручном режимах. На пробеге самолета автоматически должны были отклоняться как интерцепторы, так и воздушные тормоза, что вызывало резкое падение подъемной силы крыла и догрузку основных опор шасси, сокращая длину пробега.