Читать «Teopeма Гёделя» онлайн - страница 48

Джеймс Рой Ньюмен

Ю. А. Гастев

Примечания

1

Из этого определения немедленно вытекает, что аксиомы также причисляются к теоремам (доказательство каждой такой теоремы состоит из единственной формулы — из нее самой). — Прим. перев.

2

Именно обозначает, но не является формулой (является именем формулы); S, не принадлежащая алфавиту описываемого исчисления, относится к его метаязыку. — Прим. перев.

3

В тех случаях, когда нечего опасаться недоразумений, часть скобок в записях формулы опускают.

4

В Principia была еще аксиома «(p ˅ (q ˅ r)) ˅ (q ˅ (p ˅ r))» выводимая, однако, как установил П. Бернайс (1926), из остальных четырех аксиом. — Прим. перев.

5

Начиная отсюда, мы будем, как обычно, опускать кавычки при записях формул, напечатанных в отдельную строку. Нам, ведь, нужны не сами по себе кавычки, а уверенность в том, что не возникнет недоразумений (ср. с названием книги Рассела и Уайтхеда, всюду в настоящей книжке выделяемым не кавычками, а курсивом). — Прим. перев.

6

«Переводы» эти, разумеется, к самому исчислению не относятся. — Прим. перев.

7

Причем сказанное верно безотносительно к тому, входит ли в формулы S1 и S2 хоть одна общая переменная. — Прим. перев.

8

Конечно, еще более простой пример — формула, состоящая из одной-единственной переменной p. — Прим. перев.

9

Такое расширение можно произвести, просто присоединив эти недоказуемые предложения к арифметике в качестве новых аксиом. Поскольку мы считаем их истинными, то отрицания их не должны и не могут быть доказуемы в арифметике; значит, такое расширение непротиворечивой системы не может сделать ее противоречивой. — Прим. перев.

10

Конечно, у авторов речь шла об английском, а у самого Ришара — о французском языке. — Прим. перев.

11

Пропуск между словами можно при этом считать особой «буквой» (например, последней в алфавите) или просто писать слова подряд, без пропусков. — Прим. перев.

12

Можно было бы сказать «перевода», «моделирования», «кодирования», «представления»; в переводе мы далее будем сознательно варьировать употребление этих терминов, чтобы подчеркнуть принципиальное родство понятий, выражаемых этими терминами, между собой и с используемым далее понятием «нумерации». — Прим. перев.

13

Имеется много различных способов приписывания гёделевских номеров, и какой из них выбрать — совершенно несущественно.

14

После чего уже совсем нетрудно проверить, является ли данное выражение формулой или доказательством нашего исчисления (ср. предыдущее примечание). — Прим. перев.

15

От англ. demonstration (доказательство). — Прим. перев.

16

Цифра — это числовой знак, или имя числа (ср. выше примечание авторов на с. 35–36). — Прим. перев.

17

«Подстановка» — по-английски «substitution». — Прим. перев.