Читать «K читателям русского издания» онлайн - страница 70

ves

Фиг. 6.4. Диаграмма, подобная изображенной на фиг. 6.3, для серии из шести испытаний.

Число «спо­собов», соответствующих каждой точке диаграммы,– это про­сто число различных «путей» (т. е., попросту говоря, последо­вательность выпадения «орла» и «решки»), которыми можно прийти в эту точку из начальной, не возвращаясь при этом назад, а высота этой точки дает общее число выпадений «орла». Этот набор чисел известен под названием треугольника Паскаля, а сами числа называются биномиальными коэффициентами, поскольку они появляются при разложении выражения , Обычно эти числа на нашей диаграмме обозначаются символом , или (число сочетаний из n по k), где n – полное число

испытаний, а k – число выпадений «орла». Отмечу попутно, что биномиальные коэффициенты можно вычислять по формуле:

      (6.4)

где символ , называемый «n-факториалом», обозначает про­изведение всех целых чисел от 1 до n, т. е. . Теперь уже все готово для того, чтобы с помощью выражения (6.1) подсчитать вероятность выпадения k раз «орла» в серии из n испытаний. Полное число всех возможностей бу­дет (поскольку в каждом испытании возможны два исхода), а число равновероятных комбинаций, в которых выпадет «орел», будет , так что

       (6.5)

Поскольку доля тех серий испытаний, в кото­рых выпадение «орла» ожидается k раз, то из ста серий k вы­падений «орла» ожидается раз. Пунктирная кривая на фиг. 6.2 проведена как раз через точки функции . Видите, мы ожидали получить 15 выпадений «орла» в 14 или 15 сериях испытаний, а получили только в 13. Мы ожидали полу­чить 16 выпадений «орла» в 13 или 14 сериях испытаний, а по­лучили в 16. Но такие флуктуации вполне допускаются «пра­вилами игры».

Использованный здесь метод можно применять и в более об­щей ситуации, где в каждом единичном испытании возможны только два исхода, которые давайте обозначим через В (выигрыш) и П (проигрыш). Вообще говоря, вероятности В и П в каждом отдельном испытании могут быть разными. Пусть р, например, будет вероятностью результата В. Тогда q (вероятность резуль­тата П) должна быть равна . В серии из n испытаний вероятность того, что результат В получится k раз, равна

(6.6)

Эта функция вероятностей называется биномиальным законом распределения вероятности.

§ 3. Случайные блуждания

Существует еще одна интересная задача, при решении кото­рой не обойтись без понятия вероятности. Это проблема «слу­чайных блужданий». В простейшем варианте эта задача выгля­дит следующим образом. Вообразите себе игру, в которой игрок, начиная от точки х=0, за каждый ход может продвинуться либо вперед (до точки х), либо назад (до точки -х), причем ре­шение о том, куда ему идти, принимается совершенно случайно, ну, например, с помощью подбрасывания монеты. Как описать результат такого движения? В более общей форме эта задача описывает движение атомов (или других частиц) в газе – так называемое броуновское движение – или образование ошибки при измерениях. Вы увидите, насколько проблема «случайных блужданий» тесно связана с описанным выше опытом с подбра­сыванием монеты.