Читать «K читателям русского издания» онлайн - страница 160

ves

v2=2ga.

С какой скоростью должен двигаться искусственный спут­ник, чтобы не падать на Землю? Мы когда-то решали эту зада­чу и получили v2=GM/a. Значит, чтобы покинуть Землю, нужна скорость, в 2 большая, чем скорость вращения спутника вокруг Земли. Иными словами, чтобы улететь с Земли, нужно вдвое больше энергии (энергия пропорциональна квадрату ско­рости), чем чтобы облететь вокруг нее. Поэтому исторически сначала были совершены облеты искусственных спутников вокруг Земли, для чего понадобились скорости около 7,8 км/сек. И только потом космические корабли были заброшены в миро­вое пространство; для этого потребовалось уже вдвое больше энергии, т. е. скорости около 11,2 км/сек.

Продолжим теперь наш обзор характеристик потенциальной энергии. Давайте рассмотрим взаимодействие двух молекул или двух атомов, например двух атомов кислорода. Когда они находятся далеко друг от друга, они притягиваются с силой, обратно пропорциональной седьмой степени расстояния, а при тесном сближении они сильно отталкиваются. Проинтегри­ровав минус седьмую степень расстояния, чтобы получить ра­боту, мы увидим, что потенциальная энергия U (функция рас­стояния между атомами кислорода) изменяется как минус шес­тая степень расстояния (на больших расстояниях).

Если мы чертим некую кривую потенциальной энергии U(r) (фиг. 14.3), то при больших r она выглядит как r-6, а при до­статочно малых r достигает минимума.

Фиг. 14.3. Потенциальная энер­гия взаимодействия двух атомов как функция расстояния между ними.

Минимум потенциальной энергии в точке r=d означает, что если мы сдвинемся от нее на малое расстояние, на очень малое расстояние, то произве­денная работа, равная изменению потенциальной энергии на этом промежутке, почти равна нулю, потому что на донышке кривой энергия почти не меняется. Значит, в этой точке сила равна нулю, и это есть точка равновесия. Условие равновесия можно высказать и иначе: для удаления из точки равновесия в любую сторону нужно затратить работу. Когда два атома кислорода расположены так, что никакой энергии из их силы взаимодейст­вия больше выжать нельзя, то они находятся в наинизшем энер­гетическом состоянии и промежуток между ними равен d. Так выглядит молекула кислорода, когда она не нагрета. При нагре­вании атомы колеблются и расходятся; их можно и совсем раз­вести, но для этого нужно определенное количество работы или энергии, равное разности потенциальных энергий в точках r=d и r=. При попытке сблизить атомы энергия быстро воз­растает вследствие их взаимного отталкивания.

Почему мы говорим о потенциальной энергии? Потому что идея силы не очень пригодна для квантовой механики, там более естественна идея энергии. Когда мы рассматриваем более сложные взаимодействия: ядерного вещества, молекул и т. д., то, хотя понятия силы и скорости «рассасываются» и исчезают, оказывается, что понятие энергии все же остается. Поэтому в книгах по квантовой механике мы находим кривые потенциаль­ной энергии, но очень редко увидим график силы взаимодей­ствия двух молекул, потому что те, кто изучает эти явления, больше уже привыкли думать об энергии, чем о силе.