Читать «K читателям русского издания» онлайн - страница 158

ves

Фиг. 14.1. Силы, действующие на тело, скользящее без трения.

Важное свойство сил, о котором мы говорили, состоит в том, что если силу можно разбить на две или несколько «частей», то работа, выполняемая самой силой при движении по некоторой кривой, равна сумме работ, произведенных каждой «частью» силы. Если мы представляем силу в виде векторной суммы не­скольких сил (силы тяжести, реакции связей и т. д., или x-составляющих всех сил плюс y-составляющие и т.д., или еще как-нибудь), то работа всей силы равна сумме работ тех частей, на которые мы ее разделили.

§ 3. Консервативные силы

В природе существуют силы, скажем сила тяжести, обла­дающие замечательным свойством – «консервативностью» (ни­каких политических идей, ничего двусмысленного в этом поня­тии нет). Когда мы подсчитываем, какую работу выполняет сила, двигая тело от одной точки к другой, то вообще работа зависит от траектории; но в особых случаях эта зависи­мость пропадает. Если работа не зависит от траектории, мы говорим, что сила консервативна. Иными словами, если ин­теграл от произведения силы на приращения смещений между точками 1 и 2 (фиг. 14.2) один раз вычислен вдоль кривой А, а другой – вдоль кривой В, и оба раза получается одинаковое количество джоулей, и если это выполнено для любой кривой, соединяющей эту пару точек, и если это же справедливо для любой пары точек, то говорят, что сила консервативна. В таких обстоятельствах интеграл работы между точками 1 и 2 можно легко подсчитать и дать для него формулу. А в других случаях это не так просто: нужно задавать еще форму кривой; но когда работа не зависит от кривой, то, ясное дело, остается только зависимость от положений точек 1 и 2.

Чтобы доказать это, рассмотрим фиг. 14.2.

Фиг. 14.2. Возможные пути, соединяющие две точки в поле сил.

Фиксируем про­извольную точку Р. Криволинейный интеграл работы на участ­ке (1,2) можно вычислить, разбив его на две части: работу на участке (1, Р) и работу на участке (Р, 2), потому что сейчас у нас всюду консервативные силы, и по какому пути ни пойти, значение работы одно и то же. Работа перемещения из точки Р в любую точку пространства является функцией положения конечной точки. Она зависит и от Р, но мы во всем дальнейшем анализе точку Р закрепим, так что работа перемещения тела от точки Р к точке 2 будет некоторой функцией положения точ­ки 2. Она зависит от того, где находится точка 2; если перемес­тить тело в другую точку, ответ будет другой.

Обозначим эту функцию положения через -U(x, у, z); же­лая отметить, что речь идет именно о точке 2 с координатами x2, y2, z2, мы будем просто писать U(2), сокращая обозначение U(хг, у2, z2). Работу перемещения из точки 1 в точку Р можно написать, обратив направление интегрирования (переменив знаки всех ds). Другими словами, работа на участке (1,Р) равна работе на участке (P,1) со знаком минус:

Значит, работа на участке (Р,1) есть -U(1), а на участке (Р,2) есть -U(2). Поэтому интеграл от 1 до 2 равен -U(2) плюс [-U1) назад], т. е. + U(1)-U(2):