Читать «Физика сплошных сред» онлайн - страница 149

Ричард Фейнман

Коэффициент увлечения изменяется довольно сложным образом, как бы намекая нам на то, что в потоке происходит нечто интересное и сложное. Свойства потока полезно описывать для различных областей изменения числа Рейнольдса. Прежде всего, когда число Рейнольдса очень мало, поток вполне стационарен, скорость в любой точке потока постоянна и он плавно обтекает цилиндр. Однако распределение линий потока не похоже на их распределение в потенциальном потоке. Они описывают решение несколько другого уравнения. Когда скорость очень мала или, что эквивалентно, вязкость очень велика, так что вещество по своей консистенции напоминает мед, можно отбросить инерционные члены и описать поток уравнением

Это уравнение впервые было решено Стоксом. Он также решил задачу для сферы. Когда маленькая сфера движется при малых числах Рейнольдса, то к ней приложена сила, равная 6phaV, где арадиус сферы, a V — его скорость.

Это очень полезная формула: она говорит нам о скорости, с которой мельчайшие частички, которые приближенно можно считать шариками, движутся в жидкости под действием данной силы, как, например, в центрифуге, или при осаждении, или, наконец, в процессе диффузии. В области малых чисел Рейнольдса, т. е. при

<1, линии v вокруг цилиндра имеют такой вид, как на фиг. 41.5.

Фиг. 41.5. Вязкий поток вблизи цилиндра (малая вязкость).

Если теперь мы увеличим скорость потока, так что число Рейнольдса станет несколько больше единицы, то увидим, что поток изменится.

Фиг. 41.6. Поток, обтекающий цилиндр, при различных числах Рейнольдса.

Как показано на фиг. 41.6, б, за сферой возникнут вихри. До сих пор неясно, существовали ли вихри и при малых числах Рейнольдса или же они возникли неожиданно при некотором определенном числе? Обычно считали, что циркуляция нарастает постепенно. Однако теперь думают, что скорее она проявляется неожиданно и возрастает с увеличением

. Во всяком случае, поток в районе от

=10 до

=30 меняет свой характер. За цилиндром образуется пара вихрей.

Когда число Рейнольдса проходит через значения в районе 40, поток снова меняется. Характер движения претерпевает неожиданное и резкое изменение. Один из вихрей за цилиндром становится настолько длинным, что он отрывается и плывет вниз по течению вместе с жидкостью. При этом жидкость за цилиндром снова закручивается и возникает новый вихрь. Эти вихри поочередно отслаиваются то с одной, то с другой стороны, так что в какой-то момент поток выглядит приблизительно так, как показано на фиг. 41.6, в. Такой поток вихрей называется вихревой цепочкой Кармана. Она всегда появляется для чисел Рейнольдса

>40. Фотография такого потока показана на фиг. 41.7.

Фиг. 41.7. Фотография цепочки вихрей в потоке за цилиндром.

Разница в режиме между двумя потоками, изображенными на фиг. 41.6, а, б или в, очень велика. На фиг. 41.6, а и б скорость постоянна, тогда как на фиг. 41,6, в скорость в любой точке изменяется со временем. Выше

=40 стационарное решение отсутствует; граница перехода отмечена на фиг. 41.4 пунктирной линией. Для таких более высоких чисел поток изменяется со временем некоторым регулярным периодическим образом. Создаются вихри.