Читать «Физика сплошных сред» онлайн - страница 146

Ричард Фейнман

Воздух при 20°С h/r=15·10-6м2/сек. , (41.12)

Обычно вязкость очень сильно зависит от температуры. Например, для воды непосредственно над точкой замерзания отношение h/r в 1,8 больше, чем при 20° С.

§ 2. Вязкий поток

Перейдем теперь к общей теории вязкого потока, по крайней мере настолько общей, насколько это и известно человеку. Вы уже понимаете, что компоненты сдвиговых напряжений сдвига пропорциональны пространственным производным от различных компонент скорости, таких, как dvx/dy или dvy/дх. Однако в общем случае сжимаемой жидкости в напряжениях есть и другой член, который зависит от других производных скорости. Общее выражение имеет вид

где хiкакая-либо из координат х, у или z; viкакая-либо з прямоугольных составляющих скорости. (Значок dij обозначает символ Кронекера, который равен единице при i=j и нулю при i№j.) Ко всем диагональным элементам Sijтензора напряжений прибавляется дополнительный член h'С·v. Если жидкость несжимаема, то С·v=0 и дополнительного члена не появляется, так что он действительно имеет отношение к внутренним силам при сжатии. Для описания жидкости, точно так же как и для описания однородного упругого тела, требуются две постоянные. Коэффициент h представляет «обычный» коэффициент вязкости, который мы уже учитывали. Он называется также первым коэффициентом вязкости, а новый коэффициент h' называется вторым коэффициентом вязкости.

Теперь нам предстоит найти вязкую силу fвязк, действующую на единицу объема, после чего мы сможем подставить ее в уравнение (41.1) и получить уравнение движения реальной жидкости. Сила, действующая на маленький кубический объем жидкости, представляет собой равнодействующую всех сил, действующих на все шесть граней. Взяв их по две сразу, мы получим разность, которая зависит от производных напряжений, и, следовательно, от вторых производных скоростей. Это приятный результат, ибо он приведет нас опять к векторному уравнению. Компонента вязкой силы, действующей на единицу объема в направлении оси хi, равна

Обычно зависимость коэффициентов вязкости от координат положения несущественна и ею можно пренебречь. Тогда вязкая сила на единицу объема содержит только вторые производные скорости. Мы видели в гл. 39, что наиболее общей формой вторых производных в векторном уравнении будет сумма Лапласиана (С·С)v = С2v и градиента дивергенции (С (С·v)). Выражение (41.14) представляет как раз такую сумму с коэффициентами h и (h+h'). Мы получаем

В случае несжимаемой жидкости С·v=0 и вязкая сила в единице объема будет просто равна hС2v. Это и все, чем обычно пользуются; однако если вам понадобится вычислить поглощение звука в жидкости, то вам потребуется и второй член. Теперь мы можем закончить вывод уравнения движения реальной жидкости. Подставляя (41.15) в уравнение (41.1), получаем

Уравнение получилось, конечно, сложное, но ничего не поделаешь, такова природа.

Если мы введем W=СXv, как делали это раньше, то наше уравнение можно записать в виде

Мы снова предполагаем, что единственными объемными силами являются консервативные силы типа сил тяжести. Чтобы понять смысл нового члена, давайте рассмотрим случай несжимаемой жидкости. Если мы возьмем ротор уравнения (41.16), то получим