Читать «Эссе и размышления о Человеке и его Учении» онлайн - страница 66

Георгий Гурджиев

Четные гармоники являются повторениями предшествующих гармоник, поскольку они делятся на 2 и, таким образом, звучат как октавы. Например, октавами 1 будут гармоники 2, 4, 8, 16, 32, 64 и т.д. Они представляют собой те же , только более высокие, ноты; или же, в случае деления на два, более низкие -- например, 1/2, 1/3, 1/8. Нечетные гармоники -- новые ноты, появляющиеся впервые.

Гармоники представляют собой чистые, не темперированные и полностью согласованные между собой варианты сильно урезанного и расстроенного набора нот, который со времен "Хорошо темперированного клавира" Баха используется в 12-нотной равномерной темперации. В вышеупомянутых 24 гармониках мы встречаем как ноты, значительно отличающиеся от их темперированной версии (5, 7), так и/или неизвестные в нашей обычной гамме (7, 11, 13, 14).

Главная гамма происходит от гармонических рядов. "До" (1), "ре" (9), "ми" (5), "соль" (3), "ля" (27) и "си" (15) происходят от восходящего гармонического ряда, а "фа" (4/3) -- от нисходящего.

По мере восхождения гармоник (их транспонирования/соотношения к 1) после гармонического промежутка в первой октаве в следующих октавах появляется все больше и больше гармоник. В каждой последующей октаве между двумя соседними гармониками предыдущей октавы всегда появляется новая гармоника. Например, 3 между 1 и 2; 5 между 3 и 7; 7 между 3 и 4. Появляются все более и более тонкие градации основных нот, и ступени становятся все ближе и ближе. Музыкальное различие между одной гармоникой и последующей все больше и больше относится к области едва различимой микротональности.

Можно считать, что идея интервалов, или восприятия специфической гармонии между нотами, возникла благодаря соотношениям гармонических рядов. Любую ноту можно рассматривать, как гармонику, а любой музыкальный интервал -- как соотношение между гармониками. Это основное соотношение может быть транспонировано и выражено, как целочисленная пропорция в изначальной октаве от 1 до 2.

Все музыкальные интервалы -- более высокая нота в сочетании с более низкой -- образуются тремя следующими способами:

1. Как отношение между восходящей гармоникой и ближайшей 1 как более низкой нотой Например, 2/1 (октава), 3/2 (квинта), 5/4 (большая терция). Математически это можно выразить просто как h/1, где h -- любое положительное целое число, а знаменатель -- 1 или любая из октав единицы -2, 4, 8 и т.д.

2. Как отношение между более высокой нотой, соответствующей 1 или одной из ее октав, и нисходящей гармоникой. Математически это можно выразить как 1/h, где 1 -- более высокая нота, а более низкая нота соответствует гармонике, нисходящей от этой единицы. Например, соотношение 4/3 определяет кварту, "до" - "фа". 1/3 -- третья субгармоника нисходящего ряда. Поскольку 3 -- нечетное число, 1 транспонируется на две октавы, в 4.