Читать «Журнал "Компьютерра" №728» онлайн - страница 17

Компьютерра

Для этого на конце кронштейна 250х50х0,3 мкм из монокристалла кремния была закреплена весящая полтора микрограмма пробная масса из золота размером 54х54х27 мкм. Такой кронштейн с грузом представляет собой высокодобротный резонатор с собственной частотой около трехсот герц. Над золотым грузом, верхняя полированная сторона которого работала как зеркало, расположили световод, срез которого образовал с грузом оптический резонатор Фабри-Перо, что позволило точно измерять его смещение.

Под пробной массой за экраном расположили второй груз, представлявший собой пластину с чередующимися слоями кремния и золота. Пластину с помощью пьезомотора смещали в горизонтальной плоскости с частотой около ста герц так, чтобы под пробным грузом оказывался то кремний, то золото, и их разная масса притягивала пробный груз с разной силой. Переменная сила притяжения вызывала колебания груза, и, измеряя параметры колебаний, можно было судить о силе притяжения грузов. Все устройство помещали в надежный экран, изолирующий от внешних полей, и охлаждали до десяти градусов выше абсолютного нуля, чтобы снизить тепловые шумы. Расстояние между грузами в экспериментах менялось в пределах 4–66 мкм.

Измерения показали, что на этих масштабах заметного отклонения от закона Ньютона не наблюдается. Правда, эксперимент позволяет обнаружить лишь отклонения, которые по крайней мере в десятки, а на меньших расстояниях в миллионы раз сильнее самой гравитации. Но и эти результаты позволяют заметно улучшить точность предыдущих измерений.

Ученые решили не останавливаться на достигнутом. У данного метода измерений есть еще много скрытых резервов для увеличения точности. Можно снизить температуру и тепловые шумы, уменьшить вибрации, улучшить конструкцию маятника и оптики. И как знать, быть может, уже в следующей серии экспериментов Ньютону все-таки придется потесниться. ГА

Правильный посев

Лазер на свободных электронах, способный генерировать качественные импульсы жесткого ультрафиолета с длиной волны 32 нм, впервые удалось собрать команде ученых из нескольких институтов Франции и Японии. Примененная в нем технология обещает скорое получение рентгеновских лазерных импульсов с длиной волны 2–4 нм, которые могут совершить революцию в исследованиях биологических структур.

Лазеры на свободных электронах принципиально отличаются от обычных лазеров, в которых фотоны излучаются при скачках электронов между различными энергетическими уровнями. В таких лазерах разогнанный в ускорителе почти до скорости света пучок электронов пролетает вдоль называемой ондулятором гребенки из постоянных магнитов, которые заставляют электроны лететь по волнообразной траектории и генерировать синхротронное излучение. Лазер на свободных электронах - сооружение солидное, длина одного только ондулятора около девяти метров, не говоря уже об ускорителе и прочем оборудовании. В принципе, частота излучения определяется лишь скоростью пучка и параметрами гребенки, однако на практике из-за многочисленных технических трудностей получить от лазера на свободных электронах хорошее когерентное излучение с короткой длиной волны очень трудно.