Читать «Излучение. Волны. Кванты» онлайн - страница 30
Ричард Фейнман
Другими словами, увеличив время на Dt, можно восстановить значение a(t-r/с) добавлением отрезка
Фиг. 29.3. Электрическое поле как функция положения точки наблюдения спустя некоторый промежуток времени.
Множителем 1/r пренебрегаем.
Особый интерес представляет случай периодических колебаний заряда q. В опыте, рассмотренном в гл. 28, смещение зарядов x в момент t равнялось некоторой константе х0, амплитуде колебаний, умноженной на coswt. Ускорение в этом случае равно
Отвлечемся пока от угла q и постоянных и посмотрим, как ведет себя
§ 2. Энергия излучения
Как мы уже говорили, в любой момент времени и в любой точке пространства напряженность поля меняется обратно пропорционально расстоянию r
Отсюда следует, что энергия, получаемая в данном месте от источника поля, уменьшается по мере удаления от источника, точнее, она падает обратно пропорционально квадрату расстояния. Существует очень простая интерпретация этого факта: соберем энергию волны, попадающую в конус с вершиной в источнике, сначала на расстоянии r1 (фиг. 29.4), а затем на расстоянии r2; тогда количество энергии, падающее на единичную площадку, обратно пропорционально квадрату расстояния r, а площадь поверхности внутри конуса растет прямо пропорционально квадрату расстояния r от поверхности до вершины конуса. Таким образом, на каком бы расстоянии от вершины конуса мы ни находились, энергия, проходящая внутри конуса, одна и та же! В частности, если окружить источник со всех сторон поглощающими осцилляторами, то полное количество энергии, поступающее в них от волны, будет постоянным, независимо от расстояния до источника.
Фиг. 29.4. Количество энергии, протекающей внутри конуса OABCD, не зависит от расстояния r, на котором оно измеряется.