Читать «Электричество и магнетизм» онлайн - страница 34

Ричард Фейнман

2. Разность значений скалярного поля в двух точках равна криволинейному интегралу от касательной составляющей градиента этого скаляра вдоль любой кривой, соединяющей первую точку со второй:

(3.42)

Поверхностный интеграл от нормальной составляющей произвольного вектора по замкнутой поверхности равен интегралу от дивергенции вектора по объему, лежащему внутри этой поверхности:

(3.43)

4. Криволинейный интеграл от касательной составляющей произвольного вектора по замкнутому контуру равен поверхностному интегралу от нормальной составляющей ротора этого вектора по произвольной поверхности, ограниченной этим контуром

(3.44)

От редактора. Начиная изучать уравнения Максвелла, обратите внимание, что в этих лекциях используется рационализированная система единиц, в которой уравнения Максвелла не содержат коэффициентов.

Более привычно вместо e0 писать e0/4p; тогда коэффициент 4p исчезает из знаменателя закона Кулона (4.9), но появляется в правых частях уравнений (4.1) и (4.3). [Улучшение системы единиц всегда похоже на Тришкин кафтан.]

Кроме того, вместо квадрата скорости света вводят новую постоянную m0=e0/c2, называют ее (довольно неудачно) магнитной проницаемостью пустоты (так же, как e0 называют диэлектрической проницаемостью пустоты) и обозначают e0E=D, B=m0H.

Будьте осторожны! Проверяйте систему единиц, когда открываете новую книгу об электричестве!

*Конечно, последующие выкладки в равной мере относятся и к любому прямоугольному параллелепипеду.

Глава 4

ЭЛЕКТРОСТАТИКА

§1. Статика

§2.Закон Кулона; наложение сил

§З. Электрический потенциал

§4. E=-▽φ

§5.Поток поля Е

§6.Закон Гаусса; дивергенция поля Е

§7 .Поле заряженного шара

§8. Линии поля; эквипотенциальные поверхности

Повторишь: гл.13 и 14 (вып. 1) «Работа и потенциальная энергия»

§ 1. Статика

Начнем теперь подробное изучение теории электромагнетизма. Она вся (весь электромагнетизм целиком) запрятана в уравнениях Максвелла:

Явления, описываемые этими уравнениями, могут быть очень сложными. Но прежде чем перейти к более сложным, мы начнем со сравнительно простых и сначала научимся обращаться с ними. Самым легким для изучения является случай, который называют статическим. Это случай, когда от времени ничего не зависит, когда все заряды либо намертво закреплены на своих местах, либо если уж движутся, то их ток постоянен (т. е. r и j постоянны во времени). В этих условиях в уравнениях Максвелла все члены, являющиеся производными по времени, обращаются в нуль, и уравнения приобретают следующий вид:

Магнитостатика

Обратите внимание на интересное свойство этой системы четырех уравнений. Она распалась на две части. Электрическое поле Е появляется только в первой паре уравнений, а магнитное поле В — только во второй. Между собой эти два поля совсем не связаны. Это означает, что коль скоро заряды и токи постоянны, то электричество и магнетизм явления разные. Нельзя обнаружить никакой зависимости полей Е и В друг от друга, пока не возникают изменения в зарядах или токах, скажем, пока конденсатор не начнет заряжаться или магнит двигаться. Только когда возникают сравнительно быстрые изменения, так что временные производные в уравнениях Максвелла достигают заметной величины, Е и В начинают влиять друг на друга.