Читать «Большая Советская Энциклопедия (ИС)» онлайн - страница 379

БСЭ БСЭ

  Физическими источниками тока называют устройства, преобразующие тепловую, механическую, электромагнитную энергию, а также энергию радиационного излучения и ядерного распада в электрическую. В соответствии с наиболее часто употребляемой классификацией к физическим И. т. относят: электромашинные генераторы, термоэлектрические генераторы, термоэмиссионные преобразователи, МГД-генераторы, а также генераторы, преобразующие энергию солнечного излучения и атомного распада.

  Электромашинные генераторы, преобразующие механическую энергию в электрическую, — наиболее распространённый вид источников электрической энергии, основа современной энергетики. Они могут быть классифицированы по мощности (от долей вт до сотен Мвт), по назначению и особенностям эксплуатации (стационарные, транспортные, резервные и т. д.), по роду первичного двигателя (дизель-генераторы, турбо- и гидрогенераторы), по рабочему телу (пар, вода, газ) и т. д. Благодаря длительному периоду теоретического, конструктивного и технологического совершенствования характеристики этого типа И. т. достигли значений, близких к предельным (см. Генератор электромашинный).

  Работа термоэлектрического генератора (ТЭГ) основана на использовании Зеебека эффекта. Рабочим материалом в ТЭГ служат различные полупроводниковые соединения кремния, германия и т. п. (как правило, твёрдые растворы). Кпд ТЭГ от 3 до 15% в диапазоне температур от 100 до 1000°C. Исследования ТЭГ ведутся в СССР, США, Франции и др. Области возможного применения ТЭГ: автономные источники питания (на транспорте, в технике связи, медицине), антикоррозионная защита (на магистральных трубопроводах) и др. (см. Термоэлектрический генератор).

  Принцип работы термоэмиссионного преобразователя (ТЭП) основан на использовании термоэмиссионного эффекта (испускание электронов поверхностью нагретого металла). Термоэмиссионный поток электронов зависит главным образом от температуры и свойств поверхности материала. Кпд отдельных лабораторных образцов ТЭП достигает 30%, а действующих энергетических установок 15% (при электрической мощности, снимаемой с единицы поверхности катода, — 30 вт/см2). Наиболее перспективно применение ТЭП в качестве автономных источников электроэнергии большой мощности (до 100 квт). Работы по ТЭП ведутся в СССР, США, ФРГ, Франции и др. (см. Термоэмиссионный преобразователь энергии).

  Принцип действия И. т., преобразующих энергию солнечного излучения, основан на использовании внутреннего фотоэффекта (см. Фотоэлектрические явления). Фотоэлектрический генератор (солнечная батарея) представляет собой совокупность вентильных фотоэлементов, преобразующих энергию солнечного излучения в электрическую. Практически прямое преобразование энергии солнечного излучения стало возможно лишь после создания в 1953 высокоэффективного фотоэлемента из монокристаллического кремния. Лучшие образцы кремниевых фотоэлементов имеют кпд около 15%; срок службы их практически неограничен. Солнечные батареи применяются главным образом в космической технике, где они занимают доминирующее положение как источники энергии на искусственных спутниках Земли, орбитальных станциях и космических кораблях, а также для снабжения электроэнергией удалённых от линии электропередачи районов с большим числом солнечных дней в году, например в Туркменской ССР, Индии, Пакистане (см. Гелиотехника).