Читать «Большая Советская Энциклопедия (МЮ)» онлайн - страница 16

БСЭ БСЭ

Основным источником М. в космических лучах и на ускорителях заряженных частиц высоких энергий является распад p-мезонов (пионов), а также К-мезонов (каонов), интенсивно рождающихся при столкновениях сильно взаимодействующих частиц (адронов), например протонов (р) с ядрами:

  В космических лучах на уровне моря М. образуют основную компоненту (~80%) всех частиц космического излучения. На современных ускорителях заряженных частиц высокой энергии получают пучки М. с интенсивностью 105—106 частиц в сек.

  Спин nm, возникающего при распадах (1, а), ориентирован против направления своего импульса, а спин  от распадов (1, б) — по направлению импульса. Отсюда на основании законов сохранения импульса и момента количества движения следует, что спин m+, рождающегося при распаде покоящихся p+ или К+, направлен против его импульса, а спин m- — в направлении импульса (см. рис.).

  Поэтому М. в зависимости от кинематических условий их образования и энергетического спектра пионов и каонов оказываются частично (или полностью) поляризованными в направлении импульса (m-) или против него (m+).

  Взаимодействие мюонов. Слабые взаимодействия М. вызывают их распад по схеме:

(где е+, е-, ne,  — позитрон, электрон, электронные нейтрино и антинейтрино соответственно); эти распады и определяют «время жизни» М. в вакууме. В веществе m- «живёт» меньше: останавливаясь в веществе, он притягивается положительно заряженным ядром и образует так называемый мюонный атом, или m-мезоатом, — систему, состоящую из атомного ядра, m- и электронной оболочки. В мезоатомах благодаря слабому взаимодействию может происходить процесс захвата m- ядром:

(где Z — заряд ядра). Этот процесс аналогичен К- захвату электронов ядром и сводится к элементарному взаимодействию

(где n — нейтрон). Вероятность захвата m- ядром растет для лёгких элементов пропорционально Z4 и при Z » 10 сравнивается с вероятностью распада m-. В тяжёлых элементах «время жизни» останавливающихся m- определяется в основном вероятностью их захвата ядрами и в 20—30 раз меньше их «времени жизни» в вакууме.

  Из-за несохранения пространственной чётности в слабом взаимодействии при распаде (2, а) позитроны вылетают преимущественно в направлении спина m+, а электроны в распаде (2, б) — преимущественно в направлении, противоположном спину m- (см. рис. к ст. Слабые взаимодействия). Поэтому, изучая асимметрию вылетов электронов или позитронов в этих распадах, можно определить направления спинов m- и m+.

Одним из возможных объяснений различия М. и электрона является предположение, что m- и nm отличаются от е- и ne лептонным зарядом (числом) l: у е- и ne l = +1, a y m- и nm I = -1; для их античастиц l имеют противоположные знаки (последние распады будут запрещены тогда законом сохранения лептонного числа). Существование m — е-универсальности ставит перед теорией элементарных частиц важную и до сих пор не решённую проблему: поскольку, согласно современной теории, масса частиц имеет полевое происхождение, т. е. определяется взаимодействиями, в которых участвует частица, то непонятно, почему электрон и М., обладающие совершенно одинаковыми взаимодействиями, столь различны по своей массе. Высказывались гипотезы о наличии у М. «аномальных» взаимодействий (т. е. отсутствующих у электрона), но экспериментально такие взаимодействия не обнаружены. С др. стороны, возможно, что различие в массах М. и электрона связано с внутренним строением лептонов; однако даже сам подход к этой проблеме пока неясен. Существование М., т. о., представляет одну из интереснейших загадок природы, и не исключено, что её решение будет связано с открытиями фундаментальной важности.