Читать «Большая Советская Энциклопедия (ЭР)» онлайн - страница 37

БСЭ БСЭ

Эрлангенская программа

Эрла'нгенская програ'мма, единая точка зрения на различные геометрии (например, евклидову, аффинную, проективную), сформулированная впервые Ф. Клейном на лекции, прочитанной в 1872 в университете г. Эрланген (Германия) и напечатанной в том же году под названием «Сравнительное обозрение новейших геометрических исследований».

  Сущность Э. п. состоит в следующем. Как известно, евклидова геометрия рассматривает те свойства фигур, которые не меняются при движениях; равные фигуры определяются как фигуры, которые можно перевести одну в другую движением. Но вместо движений можно выбрать какую-нибудь иную совокупность геометрических преобразований и объявить «равными» фигуры, получающиеся одна из другой с помощью преобразований этой совокупности; при этом придём к иной «геометрии», изучающей свойства фигур, не меняющиеся при рассматриваемых преобразованиях. Введённое «равенство» должно удовлетворять следующим трём естественным условиям: 1) каждая фигура F «равна» сама себе, 2) если фигура F «равна» фигуре F ' то и F ' «равна» F, 3) если фигура F «равна» F' а F' «равна» F'', то и F «равна» F''. Соответственно этому приходится накладывать на совокупность преобразований следующие три требования: 1) в совокупность должно входить тождественное преобразование, оставляющее всякую фигуру на месте, 2) наряду с каждым преобразованием П, переводящим фигуру F в F' в совокупность должно входить «обратное» преобразование П-1 переводящее F' в F, 3) вместе с двумя преобразованиями П1 и П2 , переводящими соответственно F в F' и F' в F'', в совокупность должно входить произведение П2 П1 этих преобразований, переводящее F в F''2 П1 ) состоит в том, что сначала производится П1 , а затем П2 ). Требования 1), 2) и 3) означают, что рассматриваемая совокупность является группой преобразований (см. Непрерывная группа ). Теория, которая изучает свойства фигур, сохраняющиеся при всех преобразованиях данной группы, называется геометрией этой группы.

  Выбирая по-разному группу преобразований, получим разные геометрии. Так, принимая за основу группу движений, мы придём к обычной (евклидовой) геометрии; заменяя движения аффинными преобразованиями или проективными преобразованиями , придем к аффинной, соответственно, проективной геометрии. Основываясь на идеях А. Кэли , Клейн показал, что принятие за основу группы проективных преобразований, переводящих в себя некоторый круг (или произвольное коническое сечение), приводит к неевклидовой геометрии Лобачевского (см. Лобачевского геометрия ). Клейн ввёл в рассмотрение довольно широкий круг других геометрий, определяемых подобным же образом.

  Э. п. не охватывает некоторых важных разделов геометрии, например риманову геометрию . Однако Э. п. имела для дальнейшего развития геометрии существенное стимулирующее значение. Важные работы, ставящие своей целью объединить теоретико-групповой и дифференциально-геометрический подход к геометрии, принадлежат Я. Схоутену и Э. Картану .