Читать «Большая Советская Энциклопедия (СК)» онлайн - страница 58
БСЭ БСЭ
Чем выше частота n электромагнитного поля и больше магнитная проницаемость m проводника, тем сильнее (в соответствии с Максвелла уравнениями ) вихревое электрическое поле, создаваемое переменным магнитным полем, а чем больше проводимость а проводника, тем больше плотность тока и рассеиваемая в единице объёма мощность (в соответствии с законами Ома и Джоуля — Ленца). Т. о., чем больше n, m и s, тем сильнее затухание, т. е. резче проявляется С.-э.
В случае плоской синусоидальной волны, распространяющейся вдоль оси х в хорошо проводящей, однородной, линейной среде (токами смещения по сравнению с токами проводимости можно пренебречь), амплитуды напряжённостей электрического и магнитного полей затухают по экспоненциальному закону:
,
где
— коэффициент затухания, m0 —магнитная постоянная . На глубине х = d = 1/a амплитуда волны уменьшается в е раз. Это расстояние называется глубиной проникновения или толщиной скин-слоя. Например, при частоте 50 гц в меди (s = 580 ксим/см; m = 1) s = 9,4 мм, в стали (a = 100 ксим/см, (m = 1000) d = 0,74 мм. При увеличении частоты до 0,5 Мгц d уменьшится в 100 раз. В идеальный проводник (с бесконечно большой проводимостью) электромагнитная волна вовсе не проникает, она полностью от него отражается. Чем меньше расстояние, которое проходит волна, по сравнению с d, тем слабее проявляется С.-э.
Для проводников при сильно выраженном С.-э., когда радиус кривизны сечения провода значительно больше d и поле в проводнике представляет собой плоскую волну, вводят понятие поверхностного сопротивления проводника Z s (поверхностного импеданса). Его определяют как отношение комплексной амплитуды падения напряжения на единицу длины проводника к комплексной амплитуде тока, протекающего через поперечное сечение скин-слоя единичной длины. Комплексное сопротивление на единицу длины проводника:
где R0 — активное сопротивление проводника, определяющее мощность потерь в нём, X 0 — индуктивное сопротивление, учитывающее индуктивность проводника, обусловленную магнитным потоком внутри проводника, lc — периметр поперечного сечения скин-слоя, w = 2pn; при этом R0 = X 0 . При сильно выраженном С.-э. поверхностное сопротивление совпадает с волновым сопротивлением проводника и, следовательно, равно отношению напряжённости электрического поля к напряжённости магнитного поля на поверхности проводника.
В тех случаях, когда длина свободного пробега l носителей тока становится больше толщины d скин-слоя (например, в очень чистых металлах при низких температурах), при сравнительно высоких частотах С.-э. приобретает ряд особенностей, благодаря которым он получил название аномального. Поскольку поле на длине свободного пробега электрона неоднородно, ток в данной точке зависит от значения электрического поля не только в этой точке, но и в её окрестности, имеющей размеры порядка l Поэтому при решении уравнений Максвелла вместо закона Ома приходится использовать для вычисления тока кинетическое уравнение Больцмана. Электроны при аномальном С.-э. становятся неравноценными с точки зрения их вклада в электрический ток; при l >> d основной вклад вносят те из них, которые движутся в скин-слое параллельно поверхности металла или под очень небольшими углами к ней и проводят, т. о., больше времени в области сильного поля (эффективные электроны). Затухание электромагнитной волны в поверхностном слое по-прежнему имеет место, но количественные характеристики у аномального С.-э. несколько иные. Поле в скин-слое затухает не экспоненциально (R 0 /X 0 = ).