Читать «6. Электродинамика» онлайн - страница 82

Ричард Фейнман

Этот факт легко понять из простых физических соображений.

Мы знаем, что плотность энергии в волне зависит от квадрата амплитуды волны. По мере того как волна разбегается, ее энергия расплывается на все большую и большую площадь, пропорциональную квадрату радиуса волны. Если полная энергия сохраняется, плотность энергии должна убывать как 1/r2, а амплитуда — как 1/r. Поэтому формула (20.35) для сферической волны вполне «разумна».

Мы игнорировали другое возможное решение одномерного волнового уравнения

или

Это тоже сферическая волна, но бегущая внутрь, от больших r к началу координат.

Тем самым мы делаем некоторое специальное предположение. Мы утверждаем (без какого-либо доказательства), что волны, создаваемые источником, всегда бегут только от него. Поскольку мы знаем, что волны вызываются движением зарядов, мы настраиваемся на то, что волны бегут от зарядов. Было бы довольно странно представлять, что прежде чем заряды были приведены в движение, сферическая волна уже вышла из бесконечности и прибыла к зарядам как раз в тот момент, когда они начали шевелиться. Такое решение возможно, но опыт показывает, что, когда заряды ускоряются, волны распространяются от зарядов, а не к ним. Хоть уравнения Максвелла предоставляют обеим волнам равные возможности, мы привлекаем добавочный факт, основанный на опыте, что «физическим смыслом» обладает только расходящаяся волна.

Нужно, однако, заметить, что из этого добавочного предположения вытекает интересное следствие: мы теряем при этом симметрию относительно времени, которая есть у уравнений Максвелла. Как исходные уравнения для Е и В, так и вытекающие из них волновые уравнения при изменении знака t не меняются. Эти уравнения утверждают, что любому решению, которое отвечает волне, бегущей в одну сторону, отвечает столь же правильное решение для волны, бегущей в обратную сторону. И утверждая, что мы намерены брать в расчет только расходящиеся сферические волны, мы делаем тем самым важное дополнительное предположение. (Очень тщательно изучалась такая электродинамика, в которой обходятся без этого дополнительного предположения. Как это ни удивительно, но во многих обстоятельствах она не приводит к физически абсурдным результатам. Однако обсуждение этих идей теперь увлекло бы нас чересчур в сторону. Мы поговорим об этом подробнее в гл. 28.)

Нужно упомянуть еще об одном важном факте. В нашем решении для расходящейся волны (20.35) функция ш в начале координат бесконечна. Это как-то необычно. Мы бы предпочли иметь такие волновые решения, которые гладки повсюду. Наше решение физически относится к такой ситуации, когда в начале координат располагается источник. Значит, мы нечаянно сделали одну ошибку: наша формула (20.35) не является решением свободного волнового уравнения (20.33) повсюду; уравнение (20.33) с нулем в правой части решено повсюду, кроме начала координат. Ошибка вкралась оттого, что некоторые действия при выводе уравнения при r=0 «незаконны».

Покажем, что ту же самую ошибку легко сделать и в электростатике. Допустим, что нам нужно решить уравнение электростатического потенциала в пустом пространстве С2j=0. Лапласиан равен нулю, потому что мы предположили, что никаких зарядов нигде нет. Но как обстоит дело со сферически симметричным решением уравнения, т. е. с функцией j, зависящей только от r? Используя для лапласиана формулу (20.32), получаем