Читать «Шахматы на дне колодца» онлайн - страница 14

Александр Казанцев

- Да, Хапи. Опровержение очень остроумное. Но каково подлинное решение, известное первосвященникам бога Ра? Покажи хоть на шахматной доске.

- Изволь, мой друг! Пусть это будет шахматной тайной колодца, как ты сказал, хотя бы потому, что, создавая это произведение, я весь был в колодце! - и граф де Лейе расхохотался. - Смотри (91), не пешку "d" надо жертвовать, а пешку "h", чтобы получить ферзя на d8 - 5. h8Ф С : h8 6. d8Ф с2 7. Фа5+ КрЬ7 8. ФЬ4+ (91). Только так, в расчете на дальнейший шах с поля f8.

8. . .Крс8 9. КЬ6+, препятствуя жертвой коня ходу СсЗ. Ведь черные спят и видят пойти сюда слоном и провести свою пешку "е" в ферзи. Поэтому они отвергают жертву.

CHESS-94.GIF

CHESS-95.GIF

9. . .Kpd8. Ну если им так хочется, пожалуйста! 10. Kpf2 СсЗ (95) 11. Фf8+ Kpc7 12. Kd5+ Kpd7 13. К : с3 К : сЗ 14. Фg7+, - и вот теперь белые выигрывают коня и партию!

- Так в чем же ты видишь принципиальную разницу в этих двух различных путях к псевдовыигрышу и выигрышу?

- В измерении, мой друг.

- В измерении?

- Да. Чтобы найти путь к выигрышу, нужно было измерить ходы появившегося ферзя. Первый, ложный, вариант основывался на общих принципах. Вот и задачу жрецов я решал в общем виде, а не в конкретном случае. А что должен был делать несчастный испытуемый, сидя голодным в каземате колодца Лотоса?

- Что?

- Не выводить общие формулы, а измерять конкретные размеры...

И граф де Лейе щелкнул перед носом друга пальцами.

- Знай, мой друг, что все познаваемое человеком он измеряет - даже в шахматах их мерой ходов фигур! Уверен, что древние египтяне считали, что быть мудрым - это уметь измерять! Они измеряли уровень воды вот в этом самом Ниле, по которому мы плывем, измеряли наделы земли феллахов, число рабов и число талантов золота. Измеряли высоту пирамид и длину их теней.

- Значит, измерения?

- Да. Решение задачи не в общем виде, а в нахождении частного решения путем измерения образца.

Глава седьмая

СЕДАЯ ПРЯДЬ

Сколько времени можно бесполезно просидеть у колодца, в котором где-то внизу есть вода? Но как достать ее, если рука не дотянется? Сененмот убедился в этом, едва вошел сюда.

Тростинки! Две тростинки разной длины! Кстати, задача требует назвать длину наидлиннейшей прямой, заключенной в ободе колодца! Можно измерить ее тростинкой. Но как? Какими мерами он располагает? Тростинка в две меры, тростинка в три меры, и... можно еще получить и одну меру как разность их длин. Достаточно ли это для измерения, если не знаешь магических чисел?

Сложив вместе две тростинки, Сененмот убедился, что поперечник обода колодца несколько больше одной меры. Но насколько? Как это определить?

Он представил себе, как тщетно силились решить это те, от кого остались здесь черепа и кости.

Он встал и уложил все черепа в одну кучу, кости скелетов - в другую.

Он непроизвольно прибрал свое последнее жилище, в котором ему предстояло закончить жизнь. Кто приберег его кости?

Смертельно хотелось пить, даже больше, чем есть.