Читать «Журнал «Компьютерра» №37» онлайн - страница 24

Журнал 609 Компьютерра

На практике это привело к тому, что подобные инструкции оказалось сложно не только выполнять, но и просто декодировать (выделять из машинного кода новую инструкцию и отправлять ее на исполнительные устройства). Чтобы машинный код CISC-компьютеров из-за сложных инструкций не разрастался до огромного размера, машинные инструкции в большинстве этих архитектур имели неоднородную структуру (разное расположение и размеры кода операции и ее операндов) и сильно отличающуюся длину (в x86, например, длина инструкций варьируется от 1 до 15 байт). Еще одной проблемой стало то, что при сохранении приемлемой сложности процессора многие инструкции оказалось принципиально невозможно выполнить «чисто аппаратно», и поздние CISC-процессоры были вынуждены обзавестись специальными блоками, которые «на лету» заменяли некоторые сложные команды на последовательности более простых. В результате все CISC-процессоры оказались весьма трудоемкими в проектировании и изготовлении. Но что самое печальное, к моменту расцвета CISC-архитектур стало ясно, что все эти конструкции изобретались в общем-то зря - исследования программного обеспечения того времени, проведенные IBM, наглядно показали, что даже программисты, пишущие на ассемблере, все эти «сверхвозможности» почти никогда не использовали, а компиляторы языков высокого уровня - и не пытались использовать.

К началу 80-х годов классические CISC полностью исчерпали себя. Расширять набор инструкций в рамках этого подхода дальше не имело смысла, наоборот - технологи столкнулись с тем, что из-за высокой сложности CISC-процессоров оказалось трудно наращивать их тактовую частоту, а из-за «тормознутости» оперативной памяти тех времен зашитые в память процессора расшифровки сложных инструкций зачастую работают медленнее, чем точно такие же цепочки команд, встречающиеся в основной программе. Короче говоря, стало очевидным, что CISC-процессоры нужно упрощать - и на свет появился RISC, Reduced Instruction Set Computer.

Регистровые окна SPARC

При построении RISC-процессоров принимается во внимание медлительность оперативной памяти. Обращения к ней (даже с учетом различных кэшей) - «дорогостоящи» и требуют дополнительных вычислений, а потому, насколько это возможно, их следует избегать. Но Load/Store-архитектура и большое число регистров - не единственное, что можно сделать.

В любом программном коде можно встретить немало вызовов функций - фактически требований к процессору перейти в заданное место программы, продолжить выполнение программы до специальной инструкции возврата, после чего - вернуться к тому месту, где произошел вызов, почти полностью восстановив свое состояние до вызова функции. Чтобы это можно было сделать, при вызове функции процессор должен «запомнить» свое текущее состояние - в частности, содержимое некоторых регистров общего назначения и значительной части специальных регистров. Традиционное решение - «запихнуть» все необходимые данные в специальную конструкцию - стек[ Стек можно условно представить как запаянную с одного конца трубку, в которую по одному кладутся и по одному же извлекаются шарики (данные). Первый положенный в трубку шарик извлекается последним, так что если мы, скажем, по очереди положим (push) в стек числа 1, 2, 3, то извлекая (pop) данные, мы поочередно достанем 3, 2, 1.], которую процессор поддерживает на аппаратном уровне и которая в большинстве процессоров реализована в виде пары служебных регистров и выделенного участка оперативной памяти, куда все складываемые в стек данные и записываются. Поэтому любой вызов функции в традиционной схеме неявным образом приводит к записи в оперативную память десятков, а то и сотен байт информации. Есть даже целый ряд модельных задачек на эту тему - как написать компилятор, минимизирующий количество сохраняемой информации; причем кое-какие из этих наработок поддерживаются популярными компиляторами (например, соглашение __fastcall в некоторых компиляторах C/C++). Но оказывается, что всего этого можно избежать.