Читать «Законы силы в бизнесе» онлайн - страница 183

Ричард Кох

К примеру, американский биржевой брокер Уильям О'Нил создал для своих одноклассников фонд и управлял им с 1961 по 1986 год. За это время первоначальные 850 долларов превратились в сумму 51 653 доллара после выплаты всех налогов*. За 25 лет средний рост составил 17,85 процента в год, что выразилось в увеличении первоначальной суммы в 61 раз. Таким образом, мы видим, что если за 25 лет 15-процентный рост увеличивает капитал в 33 раза, то добавление меньше чем 3 процентных пунктов к темпам годового прироста увеличивает результат в 61 раз.

Экспоненциальный рост меняет вещи не только количественно, но и качественно. Например, при быстром росте индустрии — Питер Дрюкер называет цифру 40 процентов за 10 лет — меняется сама ее структура, и на первый план выходят новые лидеры рынка. Быстрому росту рынков способствуют новаторство, отсутствие закономерности, новые продукты, технологии или потребители. Новаторы по определению ведут дела не так, как все. Новые способы редко уживаются с привычками, идеями, процедурами и структурами существующих фирм. Новаторы нередко получают возможность снимать пенки на протяжении нескольких лет, пока традиционные лидеры не решат пойти в контратаку, но тогда может быть уже поздно.

Кролики Фибоначчи

Хочу предложить вам любопытную загадку на тему экспоненциального роста. В 1220 году Леонардо Пизанский, получивший 600 лет спустя прозвище «Фибоначчи», придумал следую-

* Уильям Дж. О 'Нил. Как делать деньги на биржах (William J. О 'Neil. How to Make Money in Stocks. 1991, McGraw-Hill, New York. P. 132).

щий сценарий. Начнем с пары кроликов. Затем представим, что каждая пара через год производит на свет другую пару, а через год — еще одну. После этого кролики становятся слишком старыми для размножения. Как будет увеличиваться количество пар, и есть ли в этой модели что-нибудь замечательное?

Если хотите, можете составить последовательность ежегодного количества пар самостоятельно, но можете посмотреть ответ сразу:

1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144...

Не замечаете ничего необычного?

Собственно говоря, тут есть два интересных момента. Один заключается в том, что начиная с третьей, каждая последующая цифра является суммой двух предыдущих. Второй состоит в том, что отношение числа каждого года (после третьего) к числу предыдущего составляет практически постоянный коэффициент, который вскоре приближается к 1,618. Другими словами, тут наблюдается постоянная скорость прироста, составляющая чуть больше 60 процентов.

Со временем загадка Кроликов Фибоначчи получила исчерпывающее математическое объяснение, но, к счастью, тут нет для него места*. Тем не менее эти кролики являются прекрасной иллюстрацией экспоненциального роста, равно как и того факта, что даже такой явно ограниченный рост не может продолжаться слишком долго. Через 144 года объем кроликов Фибоначчи превысит объем Вселенной, и все люди погибнут, задохнувшись под пушистой массой. Вот уж действительно притянуто за уши!

Большой Взрыв

Другая, более экстремальная форма экспоненциального роста, возможно, лежит в основе возникновения Вселенной. В наши дни практически все астрономы и физики согласились с Теорией Большого Взрыва, согласно которой Вселенная началась