Читать «Квантовая механика II» онлайн - страница 10
Ричард Фейнман
Мыслимы и другие возможности. Может существовать некоторая амплитуда того, что электрон перепрыгнет из возбужденного положения возле одного атома в невозбужденное положение близ следующего атома. (Это называется взаимодействием между полосами.) Математическая теория становится все сложнее и сложнее по мере того, как вы принимаете во внимание все больше и больше полос и добавляете все больше и больше коэффициентов просачивания между различными состояниями. Никаких новых идей не нужно; но уравнения, как мы видели из нашего простого примера, сильно разрастаются.
Следует еще заметить, что о различных коэффициентах, таких, как появляющаяся в теории амплитуда А, сказать можно лишь немногое. Их, как правило, очень трудно подсчитать, и в практических случаях об этих параметрах теоретически бывает очень мало известно; в тех или иных реальных случаях приходится их значения брать из опыта.
Бывают и другие случаи, в которых вся физика и вся математика почти в точности совпадают с тем, что мы обнаружили для электрона, движущегося по кристаллу, но в которых движущийся «объект» совсем не тот. Представим, например, что нашим исходным кристаллом (или, лучше сказать, линейной решеткой) была цепочка нейтральных атомов, у каждого из которых связь с внешним электроном очень слаба. Теперь вообразим, что мы убрали один электрон. У какого из атомов? Пусть Сnесть амплитуда того, что электрон исчез у атома, стоящего в точке хn. Вообще говоря, имеется какая-то амплитуда А того, что электрон от соседнего атома, скажем от (n-1)-го, перепрыгнет к n-му, оставив свой (n-1)-й атом без электрона. Это все равно, что сказать, что у «нехватки электрона» имеется амплитуда А того, что она переберется от n-го атома к (n-1)-му. Легко видеть, что уравнения окажутся такими же, как и раньше, но, конечно, сами А не обязательно останутся прежними. Мы опять придем к тем же формулам для уровней энергии, для «волн» вероятности, которые бегут по кристаллу с групповой скоростью (11.18), для эффективной массы и т. д. Только теперь эти волны описывают поведение недостающего электрона или, как его называют, «дырки». Можно убедиться, что заряд этой частицы будет казаться положительным. В следующей главе мы немного подробнее расскажем об этих дырках. Другой пример. Представим себе цепочку нейтральных атомов, один из которых был приведен в возбужденное состояние, т. е. с более высокой, чем у нормального основного состояния, энергией. Пусть Сn — амплитуда того, что n-й атом возбужден. Он может взаимодействовать с соседним атомом, передавая ему свой избыток энергии и возвращаясь в основное состояние. Обозначим амплитуду этого процесса iA/h. Вы видите, что опять повторяется та же математика. Но теперь то, что движется, называется экситоном. Оно ведет себя как нейтральная «частица», которая движется через кристалл и несет с собой энергию возбуждения. Существование такого движения можно предполагать в некоторых биологических процессах, таких, как зрение или фотосинтез. Была высказана догадка, что поглощение света в сетчатке создает «экситон», который движется через некоторую периодическую структуру [такую, как слои палочек, описанные в гл. 36 (вып. 3); см. там фиг. 36.5] и аккумулируется на некоторых специальных станциях, где эта энергия используется для возбуждения химической реакции.