Читать «Компьютерра PDA N71 (06.11.2010-13.11.2010)» онлайн - страница 10
Компьютерра
Вообще в литературе метод Монте-Карло обычно представляется как специальный способ вычисления многократных интегралов. Часто для иллюстрации рисуют такую картинку.
Численное интегрирование функции методом Монте-Карло (график из "Википедии")
Предположим, нам нужно вычислить интеграл, равный площади
На самом деле даже в этом простейшем одномерном случае можно строить более "хитрые" весовые оценки интеграла
Одним из главных недостатков метода Монте-Карло является относительно медленное убывание погрешности приближения требуемой величины с ростом числа
Для ряда "простых" задач (например, для задачи вычисления интеграла малой кратности с "хорошей", гладкой подынтегральной функцией) метод Монте-Карло проигрывает по эффективности детерминированным (как правило, сеточным) вычислительным методам.
Однако для большого класса весьма актуальных задач, связанных с вычислением многократных (даже бесконечнократных) интегралов или функционалов от решений интегральных уравнений и включающих негладкие входные данные, метод Монте-Карло практически не имеет конкурентов.
Можно также отметить, что методы Монте-Карло стремительно расширяют сферу применения. Эффективные алгоритмы численного статистического моделирования разработаны в физической и химической кинетике, статистической физике, теории массового обслуживания, финансовой математике, теории турбулентности, математической биологии и других областях.
В заключение отмечу, что бурное развитие школы методов Монте-Карло в новосибирском Академгородке на протяжении сорока с лишним лет связано с именем моего учителя, члена-корреспондента РАН Геннадия Алексеевича Михайлова. Под его руководством процветает большой отдел в Институте вычислительной математики и математической геофизики СО РАН, сотрудники которого успешно занимаются вопросами теории и приложений методов Монте-Карло.
Как компьютеры меняют работу астронома
Автор: Дмитрий Вибе