Читать «5b. Электричество и магнетизм» онлайн - страница 9
Ричард Фейнман
Есть еще одна близкая задача, в которой сила, действующая на диэлектрик, может быть найдена точно. Если мы возьмем плоский конденсатор, в котором плитка диэлектрика задвинута лишь частично (фиг. 10.9), то возникнет сила, вдвигающая диэлектрик внутрь. Провести детальное исследование силы очень трудно; оно связано с неоднородностями поля вблизи концов диэлектрика и пластин. Однако если мы не интересуемся деталями, а просто используем закон сохранения энергии, то силу легко вычислить. Мы можем определить силу с помощью ранее выведенной формулы. Уравнение (10.28) эквивалентно
(10.30)
Нам осталось только найти, как меняется емкость в зависимости от положения плитки диэлектрика.
Пусть полная длина пластин есть L, ширина их равна
xe0V/d. Следовательно, полный заряд пластин равен
откуда мы находим емкость
(10.31)
С помощью (10.30) получаем
(10.32)
Но пользы от этого выражения не очень много, разве только вам понадобится определить силу именно в таких условиях. Мы хотели лишь показать, что можно подчас избежать страшных осложнений при определении сил, действующих на диэлектрики, если пользоваться энергией, как это было в настоящем случае.
В нашем изложении теории диэлектриков мы имели дело только с электрическими явлениями, принимая как факт, что поляризация вещества пропорциональна электрическому полю. Почему возникает такая пропорциональность — вопрос, представляющий, пожалуй, еще больший интерес для физики. Стоит нам понять механизм возникновения диэлектрической проницаемости с атомной точки зрения, как мы сможем использовать измерения диэлектрической проницаемости в изменяющихся условиях для получения подробных сведений о строении атомов и молекул. Эти вопросы будут частично изложены в следующей главе.
ВНУТРЕННЕЕ УСТРОЙСТВО ДИЭЛЕКТРИКОВ
§1. Молекулярные диполи
§2. Электронная поляризация
§3. Полярные молекулы; ориентационная поляризация
§4. Электрические поля в пустотах диэлектрика
§5. Диэлектрическая проницаемость жидкостей; формула Клаузиуса — Моссотти
§6. Твердые диэлектрики
§7. Сегнетоэлектричество; титанат бария