Читать «Большая Советская Энциклопедия (ФЛ)» онлайн - страница 66
БСЭ БСЭ
Скорость ветра измеряется при помощи отвесно подвешенной на горизонтальной оси 5металлической пластины (доски) 6.Доска вращается вокруг вертикальной оси вместе с флюгаркой и под действием ветра всегда устанавливается перпендикулярно потоку воздуха. В зависимости от скорости ветра доска Ф. отклоняется от отвесного положения на тот или иной угол, отсчитываемый по дуге 7. Ф. ставят на мачте на высоте 10–12 мот поверхности земли.
Лит.:Стернзат М. С., Метеорологические приборы и наблюдения, Л., 1968.
Рис. к ст. Флюгер.
Флюидальная структура (текстура)
Флюида'льная структу'ра (тексту'ра)(от лат. fluidus – текучий), строение горных пород, характеризующееся потокообразным расположением кристаллов горных пород или микролитов основной массы, огибающих .Образуется при движении вязкой застывающей лавы. Ф. с. характерна для эффузивных (трахиты, липариты, обсидиан) горных пород; Ф. т. – для полукристаллических горных пород (габбро, нефелиновые сиениты). См. также .
Флюксий исчисление
Флю'ксий исчисле'ние,наиболее ранняя форма дифференциального и интегрального исчислений. Возникло и в основных частях было развито в сочинениях И. ;основные факты Ф. и. были получены им в 1665–66. Задачи исчисления флюксий Ньютон формулировал так: «1. Длина проходимого пути постоянно (т. е. в каждый момент времени) дана; требуется найти скорость движения в предложенное время. 2. Скорость движения постоянно дана; требуется найти длину пройденного в предложенное время пути» (Ньютон И., Математические работы, пер. с лат., М. – Л., 1937, с. 45). Время Ньютон понимал как общий аргумент, к которому отнесены все переменные величины. Систему величин х, у, z,...,одновременно изменяющихся непрерывно в зависимости от времени, он называл флюентами (лат. fluens – текущий, от fluo – теку), скорости, с которыми изменяются флюенты, – флюксиями (лат. fluxio – истечение): , , .Т. о., флюксий являются производными флюент по времени. Бесконечно малые изменения флюент Ньютон назвал моментами (понятие момента в Ф. и. соответствует дифференциалу), момент независимого переменного он обозначил знаком о, момент флюенты х –знаком xo.Представление о существе операции отыскания флюксий и особенностях символики можно получить из следующего примера (см. там же, с. 50): «Пусть, например, дано уравнение
x 3 – axx+ аху – y 3= 0.
Подставь в него и вместо хи у,ты получишь
Но по предположению x 3 – axx+ аху – y 3= 0. Поэтому вычеркни эти члены, а остальные раздели на о. При этом останется
Но так как мы предположили о бесконечно малой величиной, для того чтобы она могла выражать моменты величин, то те члены, которые на неё умножены, можно считать за ничто в сравнении с другими. Поэтому я ими пренебрегаю, и остаётся
Об обратной задаче Ф. и., обосновании Ф. и. и его истории см. в ст. И. и .
Ф. и., как особый вид дифференциального и интегрального исчисления со своеобразной символикой, развивалось только в работах английских математиков. В конце 17 – начале 18 вв. оно было вытеснено дифференциальным исчислением с символикой, более удобной и потому чаще употребляемой. Символы, принятые в Ф. и., частично сохранились в механике и в векторном анализе.