Читать «Опыты научные, политические и философские (Том 1)» онлайн - страница 107

Герберт Спенсер

Нептун Уран Сатурн Юпитер Марс Земля Венера Меркурий Солнце

0,17 0,25 0,11 0,23 0,45 1,00 0,92 1,26 0,25

Этот ряд представляет два, по-видимому, непреодолимых затруднения. Во-первых, последовательность чисел дает перерывы. Нептун имеет одинаковую плотность с Сатурном, чему, по предложенной гипотезе, не надлежало бы быть. Уран плотнее Юпитера, чего не должно было бы быть. Уран плотнее Сатурна, и Земля плотнее Венеры, факты эти не только не поддерживают вышеприведенного объяснения, но прямо противоречат ему. Второе возражение, еще более очевидным образом подрывающее это воззрение, состоит в малой плотности Солнца Если в тот период, когда Солнце распространялось до орбиты Меркурия, степень сгущения в нем частиц была такова, что отделившееся от него кольцо образовало планету, плотность которой равняется плотности железа, то само Солнце, когда оно уже окончательно сосредоточилось, должно иметь плотность, значительно превышающую плотность железа, а между тем его плотность лишь немногим превышает плотность воды. Вместо того чтобы быть гораздо плотнее ближайшей планеты, плотность Солнца составляет одну пятую плотности этой планеты.

Но из того, что эти аномалии опровергают положение, будто относительные плотности планет служат прямым указанием на степень сгущения туманного вещества, отнюдь не следует, чтобы они опровергали самый процесс.

Различие плотностей в телах Солнечной системы может обусловливаться несколькими возможными причинами: 1) различиями между планетами в отношении элементарных веществ, составляющих их, или различиями в пропорциях таких элементарных веществ, если они в планетах однородны; 2) различиями в количестве вещества, так как при одинаковости других условий взаимное притяжение молекул уже должно делать большую массу более плотной, чем небольшую; 3) различиями в температуре, потому что при одинаковых других условиях те тела, которые имеют более высокую температуру, будут иметь меньшую плотность; 4) различиями физического строения: смотря по тому, газообразны, жидки или тверды тела; или, иначе, различиями в относительном количестве твердого, жидкого и газообразного вещества, которое они в себе содержат.

Совершенно возможно и даже вероятно, что действуют все эти причины и что они принимают разнообразное участие в произведении различных результатов. Но на пути к определенным выводам встречаются затруднения. Тем не менее если мы обратимся к гипотезе генезиса туманностей, то получим хоть некоторое объяснение.

В охлаждении небесных тел участвуют несколько факторов. Примером первого и самого простого из них служит любой очаг, где мы замечаем, как быстро чернеют крошечные угольки, падающие в золу, в сравнении с большими кусками угля, долго остающимися в раскаленном виде. Этот фактор заключается в отношении между увеличением поверхности и увеличением объема: поверхности в подобных телах увеличиваются пропорционально квадратам их радиусов, тогда как объемы увеличиваются пропорционально кубам радиусов. Так, сравнивая Землю с Юпитером, диаметр которого приблизительно в 11 раз больше диаметра Земли, мы видим, что поверхность его в 125 раз больше поверхности Земли, тогда как объем его в 1 390 раз больше. Даже если мы предположим, что температура и плотность одинаковы, и примем по внимание лишь тот факт, что через данную площадь поверхности должно остыть в одном случае в 11 раз большее количество вещества, чем в другом, то получим громадную разницу во времени, какое потребовалось бы на сгущение одной планеты сравнительно с другой. Но есть еще второй фактор, в силу которого разница получилась бы еще более значительная, чем та, какая происходит в силу таких геометрических отношений. Выделение теплоты из охлаждающейся массы происходит посредством проводимости, или посредством перемещения (convectoin), или же посредством того и другого вместе. В твердых телах оно происходит исключительно посредством проводимости; в жидких и газообразных главную роль играет перемещение или смешение (convection) - посредством циркулирующих токов, которые постоянно перемещают горячие и холодные части. Чем больше размеры еще не сгустившихся сфероидов, газообразных, или капельножидких, или смешанных, тем больше является препятствий к охлаждению вследствие большего расстояния, какое должны пройти циркулирующие токи. Конечно, отношение это сложное: скорость токов неодинакова. Тем не менее очевидно, что в шаре, диаметр которого в 11 раз больше, перемещение вещества от центра к поверхности и обратно от поверхности к центру потребует гораздо больше времени, хотя бы движение не испытало задержки. Но движение его в тех случаях, которые мы рассматриваем, сильно задерживается. Во вращающемся вокруг своей оси сфероиде оказывают свое действие силы, замедляющие его и растущие со скоростью вращения. В таком сфероиде различные части вещества (предполагая одинаковую угловую скорость в их вращении вокруг своей оси, к чему они будут все больше и больше стремиться по мере уплотнения) должны различаться по своей абсолютной скорости в зависимости от их расстояний от оси, причем циркулирующие токи должны постоянно изменять это расстояние, вследствие чего непременно или уменьшается, или увеличивается количество движения в каждой частице. При прохождении через капельножидкую среду каждая частица благодаря трению теряет силу, то увеличивая свое движение, то замедляя его. Отсюда является то, что, когда больший сфероид имеет также и большую скорость вращения, относительная медленность циркулирующих токов и вытекающее отсюда замедление охлаждения должны быть гораздо больше, чем те, какие можно ожидать вследствие того добавочного расстояния, которое должно быть пройдено каждой частью.