Читать «Статистика: учебное пособие» онлайн - страница 12

Леонид Леонидович Букин

Располагаем данные анализа в порядке возрастания их значений: 2,11; 2,19; 2,25; 2,32; 2,38; 3,21.

Вычисляем:

Далее находим Qтабл для n = 6 и вероятности p = 0,99 (табл. 4).

Таблица 4. Значения Q в зависимости от степени надежности (p)

и общего числа значений признака (n)

Величина Qтабл= 0,70. Следовательно, значение 3,21 должно быть исключено как нетипичное для данной совокупности.

При числе значений признака больше трех (и больше восьми) можно использовать другую методику определения пригодности первичных данных. По всем значениям признака в совокупности сначала рассчитывают среднюю величину (Х) и среднее квадратическое отклонение (σ), затем на основании разницы (без учета знака) между максимально отклоняющимся значением (Xmax) и средней величиной находят величину критерия Rmax по формуле:

Значение Rmax сопоставляют с табличным его значением при данном числе значений признака для вероятности p = 0,99 (табл. 5).

Если Rmax > Rтабл, то сомнительное значение (X) следует исключить, если же Rmax < Rтабл, то значение (Xmax) следует принимать в расчет.

При n > 20 показатель Rmax ≈ 3 и условие пригодности имеет вид:

Таблица 5. Значения Rmax для степени надежности p = 0,99 в зависимости

от числа единиц совокупности n

Обратимся к предыдущему примеру и вычислим:

При расчете средней величины и среднего квадратического отклонения используют все значения признака. Затем рассчитываем:

Для n = 6, Rтабл _ 2,13; так как 2,22 > 2,13, то сомнительное значение 3,21 необходимо отбросить из статистической обработки. Если сомнение вызывает не одно, а несколько значений, то сначала производят указанные выше расчеты только для одного из них (наиболее отклоняющегося). После его исключения повторяют расчет для следующего сомнительного значения, вычисляя заново X и σ.

При проверке годности данных с использованием любой методики может быть исключено не более одной трети единиц совокупности.

Если исключению подлежит более одной трети всех единиц совокупности, то данная совокупность считается неоднородной.

При изучении экономических явлений статистика встречается с разнообразной вариацией признаков, характеризующих отдельные единицы совокупностей. Величины признаков варьируют под воздействием различных причин и условий. Чем разнообразнее условия, влияющие на размер признака, тем больше его вариация.

Рассмотренные показатели центральной тенденции и показатели вариации представляют собой частные случаи некоторой единой системы статистических характеристик распределения. Такая единая система характеристик может быть представлена моментами статистического распределения. Если при вычислении моментов за произвольную постоянную принимается средняя арифметическая, то такие моменты называются центральными.

Общая формула центральных моментов k-го порядка имеет вид:

Иначе говоря, центральные моменты k-го порядка представляют собой среднюю арифметическую из k – x степеней отклонений значений признака от средней арифметической.

1. Центральный момент нулевого порядка равен единице при k = 0: