Читать «Электромеханика в космосе» онлайн - страница 31

Андраник Гевондович Иосифьян

Результаты этого полета позволили получить спектрограммы далеких звезд (величиной 10–13m) в ультрафиолетовом диапазоне, что невозможно осуществить с помощью наземной аппаратуры. Тем самым, рассмотренная бортовая астрономическая обсерватория «Орион-2» внесла большой вклад во внеатмосферную астрономию, хотя и имела очень малый диаметр телескопа.

За последние годы в США с привлечением крупнейших ученых других стран проектируется «Большой космический телескоп» диаметром зеркала 3 м, который предполагается вывести на круговую орбиту высотой 360 км. Эта астрономическая обсерватория — спутник, корпус которого одновременно является корпусам телескопа. На рис. 19 представлена оптико-электронная схема телескопа. С помощью «Большого космического телескопа» можно будет изучать очень слабые небесные объекты до звездной величины +29m (с помощью самых мощных наземных телескопов можно исследовать лишь объекты до величины +22m). Точность стабилизации движения изображения внутри космического телескопа предполагается до 0,005". Основным элементом космического телескопа является оптическая труба, научные приборы и модуль ориентации. Панели солнечных батарей должны снабжать космический телескоп и всю обсерваторию электроэнергией. Ориентацию и стабилизацию «Большого космического телескопа» по трем строительным осям предполагается осуществлять с помощью отмеченной выше комбинированной трехступенчатой системы: электродвигателем-маховиком, силовым моментным электрогироскопом и космическим моментным магнитодвигателем или газореактивной системой малой тяги.

Рис. 19. Оптико-электронная схема «Большого космического телескопа»:

1, 2, 3 и 4 — оптические зеркала; 5 — вычислительный модуль; 6 — прецизионные гироскопы-датчики; 7 — моментные электрогироскопы; 8 — датчики точного наведения; α — угол отклонения от заданного направления

Структурная схема силового моментного электрогироскопа (по одной из строительных осей) представлена на рис. 9.

Одной из проблем, возникших при проектировании телескопа, была необходимость стабилизации движения изображения с точностью 0,005" (от среднеквадратичного значения), требуемой для получения максимального выигрыша по сравнению с наземными дифракционными телескопами (имеющими относительно слабое разрешение). На первом этапе решения этой проблемы пытались создать систему управления, использующую вторичное зеркало стабилизации, с точностью ±1". При дальнейшей разработке «Большого космического телескопа» использовались модели, рассчитанные с помощью ЭВМ, на которых сравнивались методы стабилизации и ориентации, использующие моментный гироскоп и электрореактивные маховики при различных внешних воздействиях. Эти экспериментальные исследования показали, что в принципе планируемая точность стабилизации спутника вполне возможна. Однако перед конструкторами встали весьма трудные проблемы, для разрешения которых потребуются «ропотливые экспериментальные исследования вибрации электрореактивных маховиков, возникающей гари дебалансе и в зонах нечувствительности в измерительных приборах. Каждый из этих факторов может ухудшить стабилизацию. Корабль с космическим телескопом имеет форму усеченного конуса. Центр пересечения основных строительных осей спутника размещен в центре его масс. Управление телескопом (в целом) осуществляется бортовой ЭВМ, на выходе которой имеются внешние блоки управления электромеханическими исполнительными органами телескопа.